Savonius vertical axis wind turbines (VAWTs) typically suffer from low efficiency due to detrimental drag production during one half of the rotational cycle. The present study examines a stator assembly created with the objective of trapping cylindrical flow for application in a Savonius VAWT. While stator assemblies have been studied in situ around Savonius rotors in the past, they have never been isolated from the rotor to determine the physics of the flow field, raising the likelihood that a moving rotor could cover up deficiencies attributable to the stator design. The flow field created by a stator assembly, sans rotor, is studied computationally using three-dimensional (3D) numerical simulations in the commercial computational fluid dynamics (CFD) package Star-CCM+. Examination of the velocity and pressure contours at the central stator plane shows that the maximum induced velocity exceeded the freestream velocity by 65%. However, flow is not sufficiently trapped in the stator assembly, with excess leakage occurring between the stator blades due to adverse pressure gradients and momentum loss from induced vorticity. A parametric study was conducted on the effect of the number of stator blades with simulations conducted with 6, 12, and 24 blades. Reducing the blade number resulted in a reduction in the cohesiveness of the internal swirling flow structure and increased the leakage of flow through the stator. Two unique energy loss mechanisms have been identified with both caused by adverse pressure gradients induced by the stator.

References

References
1.
Strickland
,
J. H.
,
Webster
,
B. T.
, and
Nguyen
,
T.
,
1979
, “
A Vortex Model of the Darrieus Turbine: An Analytical and Experimental Study
,”
ASME J. Fluids Eng.
,
101
(
4
), pp.
500
505
.
2.
Gosselin
,
R.
,
Dumas
,
G.
, and
Boudreau
,
M.
,
2013
, “
Parametric Study of H-Darrieus Vertical-Axis Turbines Using uRANS Simulations
,”
21st Annual Conference of the CFD Society of Canada
(
CFDSC
), Sherbrooke, QC, Canada, May 6–9, pp.
6
9
.http://www.lmfn.ulaval.ca/fileadmin/lmfn/documents/Articles/GosselinDumasBoudreau-CFD2013_reprint.pdf
3.
Ikoma
,
T.
,
Masuda
,
K.
,
Maeda
,
H.
, and
Sasanuma
,
T.
,
2007
, “
A Basic Study on Characteristics of Torque and Hydrodynamic Force of Darrieus Water Turbines
,”
In Conference of the Japan Society of Naval Architects and Ocean Engineers (JASNAOE)
, Vol.
4
, pp.
51
54
.
4.
Kotb
,
M.
, and
Aldoss
,
T.
,
1991
, “
Flow field Around a Partially-Blocked Savonius Rotor
,”
Appl. Energy
,
38
(
2
), pp.
117
132
.
5.
Shaughnessy
,
B.
, and
Probert
,
S.
,
1992
, “
Partially-Blocked Savonius Rotor
,”
Appl. Energy
,
43
(
4
), pp.
239
249
.
6.
Mohamed
,
M.
,
Janiga
,
G.
,
Pap
,
E.
, and
Thévenin
,
D.
,
2011
, “
Optimal Blade Shape of a Modified Savonius Turbine Using an Obstacle Shielding the Returning Blade
,”
Energy Convers. Manage.
,
52
(
1
), pp.
236
242
.
7.
Zhang
,
B.
,
Song
,
B.
,
Mao
,
Z.
, and
Tian
,
W.
,
2017
, “
A Novel Wake Energy Reuse Method to Optimize the Layout for Savonius-Type Vertical Axis Wind Turbines
,”
Energy
,
121
, pp.
341
355
.
8.
Craig
,
A. E.
,
Dabiri
,
J. O.
, and
Koseff
,
J. R.
,
2016
, “
Flow Kinematics in Variable-Height Rotating Cylinder Arrays
,”
ASME J. Fluids Eng.
,
138
(
11
), p.
111203
.
9.
Sabzevari
,
A.
,
1977
, “
Performance Characteristics of Concentrator-Augmented Savonius Wind Rotors
,”
Wind Eng.
,
1
(
3
), pp.
198
206
.http://www.jstor.org/stable/43749084
10.
Sivasegaram
,
S.
,
1979
, “
Concentration Augmentation of Power in a Savonius-Type Wind Rotor
,”
Wind Eng.
,
3
(
1
), pp.
52
61
.http://www.jstor.org/stable/43750165
11.
Fukutomi
,
J.
,
Shigemitsu
,
T.
, and
Daito
,
H.
,
2011
, “
Study on Performance and Flow Condition of a Cross-Flow Wind Turbine With a Symmetrical Casing
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
051101
.
12.
Sivapalan
,
S.
, and
Sivasegaram
,
S.
,
1980
, “
Direction-Independent, Concentration-Augmented Slow-Running Wind-Rotors
,”
Wind Eng.
,
4
(3), pp. 134–141http://www.jstor.org/stable/43749998.
13.
Sivasegaram
,
S.
,
1986
, “
Power Augmentation in Wind Rotors—A Review
,”
Wind Eng.
,
10
(3), pp.
163
179
.http://www.jstor.org/stable/43749280
14.
Altan
,
B. D.
,
Atilgan
,
M.
, and
Ozdamar
,
A.
,
2008
, “
An Experimental Study on Improvement of a Savonius Rotor Performance With Curtaining
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1673
1678
.
15.
Altan
,
B. D.
, and
Atilgan
,
M.
,
2010
, “
The Use of a Curtain Design to Increase the Performance Level of a Savonius Wind Rotors
,”
Renewable Energy
,
35
(
4
), pp.
821
829
.
16.
Rowe
,
J.
,
2004
, “
Vertical Axis Wind Turbine
,” Pacifex Management Inc., King City, ON, Canada, U.S. Patent No.
6,740,989
.https://www.google.com/patents/US6740989
17.
Pope
,
K.
,
Rodrigues
,
V.
,
Doyle
,
R.
,
Tsopelas
,
A.
,
Gravelsins
,
R.
,
Naterer
,
G. F.
, and
Tsang
,
E.
,
2010
, “
Effects of Stator Vanes on Power Coefficients of a Zephyr Vertical Axis Wind Turbine
,”
Renewable Energy
,
35
(
5
), pp.
1043
1051
.
18.
Pope
,
K.
,
Dincer
,
I.
, and
Naterer
,
G.
,
2010
, “
Energy and Exergy Efficiency Comparison of Horizontal and Vertical Axis Wind Turbines
,”
Renewable Energy
,
35
(
9
), pp.
2102
2113
.
19.
Korprasertsak
,
N.
,
Korprasertsak
,
N.
, and
Leephakpreeda
,
T.
,
2014
, “
CFD Modeling and Design of Wind Boosters for Low Speed Vertical Axis Wind Turbines
,”
Adv. Mater. Res.
,
1016
, pp.
554
558
.
20.
Korprasertsak
,
N.
, and
Leephakpreeda
,
T.
,
2015
, “
Optimal Design of Wind Boosters for Low Speed Vertical Axis Wind Turbines
,”
Appl. Mech. Mater.
,
798
, pp.
195
199
.
21.
Korprasertsak
,
N.
, and
Leephakpreeda
,
T.
,
2016
, “
Analysis and Optimal Design of Wind Boosters for Vertical Axis Wind Turbines at Low Wind Speed
,”
J. Wind Eng. Ind. Aerodyn.
,
159
, pp.
9
18
.
22.
Yen
,
J. T.
,
1975
, “
Tornado-Type Wind Energy System
,”
In Energy 10; Annual Intersociety Energy Conversion and Engineering Conference
, Newark, DE, Aug. 18–22, pp.
987
994
.
23.
Yen
,
J. T.
,
1978
, “
Tornado-Type Wind Turbine
,” Grumman Aerospace Corporation, Baldwin, NY, U.S. Patent No.
4,070,131
.https://www.google.ch/patents/US4070131
24.
Hsu
,
C.
,
1984
, “
Tornado Type Wind Turbines
,” Iowa State University Research Foundation, Inc., Ames, IA, U.S. Patent No.
4,452,562
.http://www.google.com.pg/patents/US4452562
25.
Hsu
,
C.
, and
Minachi
,
A.
,
1990
, “
Performance Tests of Tornado-Type Wind Turbine Models
,”
J. Propul. Power
,
6
(
2
), pp.
181
185
.
26.
Volk
,
T.
,
1982
, “
Performance of Tornado Wind Energy Conversion Systems
,”
J. Energy
,
6
(
5
), pp.
348
350
.
27.
Eriksson
,
S.
,
Bernhoff
,
H.
, and
Leijon
,
M.
,
2008
, “
Evaluation of Different Turbine Concepts for Wind Power
,”
Renewable Sustainable Energy Rev.
,
12
(
5
), pp.
1419
1434
.
28.
Rassoulinejad-Mousavi
,
S.
,
Jamil
,
M.
, and
Layeghi
,
M.
,
2013
, “
Experimental Study of a Combined Three Bucket H-Rotor With Savonius Wind Turbine
,”
World Appl. Sci. J.
,
28
(
2
), pp.
205
211
.
29.
de Farias Neto
,
S.
,
Legentilhomme
,
P.
, and
Legrand
,
J.
,
1998
, “
Finite-Element Simulation of Laminar Swirling Decaying Flow Induced by Means of a Tangential Inlet in an Annulus
,”
Comput. Methods Appl. Mech. Eng.
,
165
(
1–4
), pp.
189
213
.
30.
CD-adapco, 2016, “
Star-CCM+
,” CD-adapco, Melville, NY.
31.
Sanderse
,
B.
, and
Koren
,
B.
,
2009
, “
Energy Preservation in the Numerical Calculation of Wind Turbine Wakes
,”
Euromech Colloquium 508 Wind Turbine Wakes
, Madrid, Spain, Oct. 20–22, pp. 16–18.https://www.ecn.nl/publicaties/PdfFetch.aspx?nr=ECN-M--09-145
32.
Shigetomi
,
A.
,
Murai
,
Y.
,
Tasaka
,
Y.
, and
Takeda
,
Y.
,
2011
, “
Interactive Flow Field Around Two Savonius Turbines
,”
Renewable Energy
,
36
(
2
), pp.
536
545
.
33.
McLaren
,
K.
,
Tullis
,
S.
, and
Ziada
,
S.
,
2012
, “
Computational Fluid Dynamics Simulation of the Aerodynamics of a High Solidity, Small-Scale Vertical Axis Wind Turbine
,”
Wind Energy
,
15
(
3
), pp.
349
361
.
You do not currently have access to this content.