We present simulations of a new experimental platform at the National Ignition Facility (NIF) for studying the hydrodynamic instability growth of a high-energy density (HED) fluid interface that undergoes multiple shocks, i.e., is “reshocked.” In these experiments, indirect-drive laser cavities drive strong shocks through an initially solid, planar interface between a high-density plastic and low-density foam, in either one or both directions. The first shock turns the system into an unstable fluid interface with the premachined initial condition that then grows via the Richtmyer–Meshkov and Rayleigh–Taylor instabilities. Backlit X-ray imaging is used to visualize the instability growth at different times. Our main result is that this new HED reshock platform is established and that the initial data confirm the experiment operates in a hydrodynamic regime similar to what simulations predict. The simulations also reveal new types of edge effects that can disturb the experiment at late times and suggest ways to mitigate them.

References

References
1.
Mikaelian
,
K. O.
,
1985
, “
Richtmyer-Meshkov Instabilities in Stratified Fluids
,”
Phys. Rev. A
,
31
(
1
), p.
410
.
2.
Mikaelian
,
K. O.
,
1989
, “
Turbulent Mixing Generated by Rayleigh-Taylor and Richtmyer-Meshkov Instabilities
,”
Phys. D: Nonlinear Phenom.
,
36
(
3
), pp.
343
357
.
3.
Moses
,
E. I.
,
Lindl
,
J. D.
,
Spaeth
,
M. L.
,
Patterson
,
R. W.
,
Sawicki
,
R. H.
,
Atherton
,
L. J.
,
Baisden
,
P. A.
,
Lagin
,
L. J.
,
Larson
,
D. W.
,
MacGowan
,
B. J.
,
Miller
,
G. H.
,
Rardin
,
D. C.
,
Roberts
,
V. S.
,
Van Wonterghem
,
B. M.
, and
Wegner
,
P. J.
,
2016
, “
Overview: Development of the National Ignition Facility and the Transition to a User Facility for the Ignition Campaign and High Energy Density Scientific Research
,”
Fusion Sci. Technol.
,
69
(
1
), pp.
1
24
.
4.
Lindl
,
J. D.
,
1998
,
Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive
,
American Institute of Physics
, Springer-Verlag, New York.
5.
Atzeni
,
S.
, and
Jürgen
,
M-T-V.
,
2004
,
The Physics of Inertial Fusion: BeamPlasma Interaction, Hydrodynamics, Hot Dense Matter
, Vol.
125
, Oxford University Press, New York.
6.
Haan
,
S. W.
,
Lindl
,
J. D.
,
Callahan
,
D. A.
,
Clark
,
D. S.
,
Salmonson
,
J. D.
,
Hammel
,
B. A.
,
Atherton
,
L. J.
,
Cook
,
R. C.
,
Edwards
,
M. J.
,
Glenzer
,
S.
,
Hamza
,
A. V.
,
Hatchett
,
S. P.
,
Herrmann
,
M. C.
,
Hinkel
,
D. E.
,
Ho
,
D. D.
,
Huang
,
H.
,
Jones
,
O. S.
,
Kline
,
J.
,
Kyrala
,
G.
,
Landen
,
O. L.
,
MacGowan
,
B. J.
,
Marinak
,
M. M.
,
Meyerhofer
,
D. D.
,
Milovich
,
J. L.
,
Moreno
,
K. A.
,
Moses
,
E. I.
,
Munro
,
D. H.
,
Nikroo
,
A.
,
Olson
,
R. E.
,
Peterson
,
K.
,
Pollaine
,
S. M.
,
Ralph
,
J. E.
,
Robey
,
H. F.
,
Spears
,
B. K.
,
Springer
,
P. T.
,
Suter
,
L. J.
,
Thomas
,
C. A.
,
Town
,
R. P.
,
Vesey
,
R. S.
,
Weber
,
V.
,
Wilkens
,
H. L.
, and
Wilson
,
D. C.
,
2011
, “
Point Design Targets, Specifications, and Requirements for the 2010 Ignition Campaign on the National Ignition Facility
,”
Phys. Plasmas
,
18
(
5
), p.
051001
.
7.
Ma
,
T.
,
Patel
,
P. K.
,
Izumi
,
N.
,
Springer
,
P. T.
,
Key
,
M. H.
,
Atherton
,
L. J.
,
Barrios
,
M. A.
,
Benedetti
,
L. R.
,
Bionta
,
R.
,
Bond
,
E.
,
Bradley
,
D. K.
,
Caggiano
,
J.
,
Callahan
,
D. A.
,
Casey
,
D. T.
,
Celliers
,
P. M.
,
Cerjan
,
C. J.
,
Church
,
J. A.
,
Clark
,
D. S.
,
Dewald
,
E. L.
,
Dittrich
,
T. R.
,
Dixit
,
S. N.
,
Döppner
,
T.
,
Dylla-Spears
,
R.
,
Edgell
,
D. H.
,
Epstein
,
R.
,
Field
,
J.
,
Fittinghoff
,
D. N.
,
Frenje
,
J. A.
,
Gatu Johnson
,
M.
,
Glenn
,
S.
,
Glenzer
,
S. H.
,
Grim
,
G.
,
Guler
,
N.
,
Haan
,
S. W.
,
Hammel
,
B. A.
,
Hatarik
,
R.
,
Herrmann
,
H. W.
,
Hicks
,
D.
,
Hinkel
,
D. E.
,
Berzak Hopkins
,
L. F.
,
Hsing
,
W. W.
,
Hurricane
,
O. A.
,
Jones
,
O. S.
,
Kauffman
,
R.
,
Khan
,
S. F.
,
Kilkenny
,
J. D.
,
Kline
,
J. L.
,
Kozioziemski
,
B.
,
Kritcher
,
A.
,
Kyrala
,
G. A.
,
Landen
,
O. L.
,
Lindl
,
J. D.
,
Le Pape
,
S.
,
MacGowan
,
B. J.
,
Mackinnon
,
A. J.
,
MacPhee
,
A. G.
,
Meezan
,
N. B.
,
Merrill
,
F. E.
,
Moody
,
J. D.
,
Moses
,
E. I.
,
Nagel
,
S. R.
,
Nikroo
,
A.
,
Pak
,
A.
,
Parham
,
T.
,
Park
,
H.-S.
,
Ralph
,
J. E.
,
Regan
,
S. P.
,
Remington
,
B. A.
,
Robey
,
H. F.
,
Rosen
,
M. D.
,
Rygg
,
J. R.
,
Ross
,
J. S.
,
Salmonson
,
J. D.
,
Sater
,
J.
,
Sayre
,
D.
,
Schneider
,
M. B.
,
Shaughnessy
,
D.
,
Sio
,
H.
,
Spears
,
B. K.
,
Smalyuk
,
V.
,
Suter
,
L. J.
,
Tommasini
,
R.
,
Town
,
J. R. P.
,
Volegov
,
P. L.
,
Wan
,
A.
,
Weber
,
S. V.
,
Widmann
,
K.
,
Wilde
,
C. H.
,
Yeamans
,
C.
, and
Edwards
,
M. J.
,
2017
, “
The Role of Hot Spot Mix in the Low-Foot and High-Foot Implosions on the NIF
,”
Phys. Plasmas
,
24
(
5
), p.
056311
.
8.
Vetter
,
M.
, and
Sturtevant
,
B.
,
1995
, “
Experiments on the Richtmyer-Meshkov Instability of an Air/SF 6 Interface
,”
Shock Waves
,
4
(
5
), pp.
247
252
.
9.
Poggi
,
F.
,
Thorembey
,
M. H.
, and
Rodriguez
,
G.
,
1998
, “
Velocity Measurements in Turbulent Gaseous Mixtures Induced by Richtmyer–Meshkov Instability
,”
Phys. Fluids
,
10
(
11
), pp.
2698
2700
.
10.
Leinov
,
E.
,
Malamud
,
G.
,
Elbaz
,
Y.
,
Levin
,
L. A.
,
Ben-Dor
,
G.
,
Shvarts
,
D.
, and
Sadot
,
O.
,
2009
, “
Experimental and Numerical Investigation of the Richtmyer–Meshkov Instability Under Re-Shock Conditions
,”
J. Fluid Mech.
,
626
, pp.
449
475
.
11.
Balasubramanian
,
S.
,
Orlicz
,
G. C.
,
Prestridge
,
K. P.
, and
Balakumar
,
B. J.
,
2012
, “
Experimental Study of Initial Condition Dependence on Richtmyer-Meshkov Instability in the Presence of Reshock
,”
Phys. Fluids
,
24
(
3
), p.
034103
.
12.
Jacobs
,
J. W.
,
Krivets
,
V. V.
,
Tsiklashvili
,
V.
, and
Likhachev
,
O. A.
,
2013
, “
Experiments on the Richtmyer–Meshkov Instability With an Imposed, Random Initial Perturbation
,”
Shock Waves
,
23
(
4
), pp.
407
413
.
13.
Reilly
,
D.
,
McFarland
,
J.
,
Mohaghar
,
M.
, and
Ranjan
,
D.
,
2015
, “
The Effects of Initial Conditions and Circulation Deposition on the Inclined-Interface Reshocked Richtmyer–Meshkov Instability
,”
Exp. Fluids
,
56
(
8
), p.
168
.
14.
Robey
,
H. F.
,
Zhou
,
Y.
,
Buckingham
,
A. C.
,
Keiter
,
P.
,
Remington
,
B. A.
, and
Drake
,
R. P.
,
2003
, “
The Time Scale for the Transition to Turbulence in a High Reynolds Number, Accelerated Flow
,”
Phys. Plasmas
,
10
(
3
), pp.
614
622
.
15.
Zhou
,
Y.
,
2007
, “
Unification and Extension of the Similarity Scaling Criteria and Mixing Transition for Studying Astrophysics Using High Energy Density Laboratory Experiments or Numerical Simulations
,”
Phys. Plasmas
,
14
(
8
), p.
082701
.
16.
Latini
,
M.
,
Schilling
,
O.
, and
Don
,
W. S.
,
2007
, “
Effects of WENO Flux Reconstruction Order and Spatial Resolution on Reshocked Two-Dimensional Richtmyer–Meshkov Instability
,”
J. Comput. Phys.
,
221
(
2
), pp.
805
836
.
17.
Mikaelian
,
K. O.
,
2011
, “
Extended Model for Richtmyer–Meshkov Mix
,”
Phys. D: Nonlinear Phenom.
,
240
(
11
), pp.
935
942
.
18.
Thornber
,
B.
,
Drikakis
,
D.
,
Youngs
,
D. L.
, and
Williams
,
R. J. R.
,
2011
, “
Growth of a Richtmyer-Meshkov Turbulent Layer after Reshock
,”
Phys. Fluids
,
23
(
9
), p.
095107
.
19.
Lombardini
,
M.
,
Hill
,
D. J.
,
Pullin
,
D. I.
, and
Meiron
,
D. I.
,
2011
, “
Atwood Ratio Dependence of Richtmyer–Meshkov Flows Under Reshock Conditions Using Large-Eddy Simulations
,”
J. Fluid Mech.
,
670
, pp.
439
480
.
20.
Morgan
,
R. V.
,
Aure
,
R.
,
Stockero
,
J. D.
,
Greenough
,
J. A.
,
Cabot
,
W.
,
Likhachev
,
O. A.
, and
Jacobs
,
J. W.
,
2012
, “
On the Late-Time Growth of the Two-Dimensional Richtmyer–Meshkov Instability in Shock Tube Experiments
,”
J. Fluid Mech.
,
712
, pp.
354
383
.
21.
Morán-López
,
J. T.
, and
Schilling
,
O.
,
2013
, “
Multicomponent Reynolds-Averaged Navier–Stokes Simulations of Reshocked Richtmyer–Meshkov Instability-Induced Mixing
,”
High Energy Density Phys.
,
9
(
1
), pp.
112
121
.
22.
Haines
,
B. M.
,
Grinstein
,
F. F.
,
Welser-Sherrill
,
L.
, and
Fincke
,
J. R.
,
2013
, “
Simulations of Material Mixing in Laser-Driven Reshock Experiments
,”
Phys. Plasmas
,
20
(
2
), p.
022309
.
23.
Mikaelian
,
K. O.
,
2015
, “
Testing an Analytic Model for Richtmyer–Meshkov Turbulent Mixing Widths
,”
Shock Waves
,
25
(
1
), pp.
35
45
.
24.
Grinstein
,
F. F.
,
2017
, “
Initial Conditions and Modeling for Simulations of Shock Driven Turbulent Material Mixing
,”
Comput. Fluids
,
151
, pp.
58
72
.
25.
Doss
,
F. W.
,
Kline
,
J. L.
,
Flippo
,
K. A.
,
Perry
,
T. S.
,
DeVolder
,
B. G.
,
Tregillis
,
I.
,
Loomis
,
E. N.
,
Merritt, E. C.
,
Murphy, T. J.
,
Welser-Sherrill, L.
, and
Fincke, J. R.
,
2015
, “
The Shock/Shear Platform for Planar Radiation-Hydrodynamics Experiments on the National Ignition Facility A
,”
Phys. Plasmas
,
22
(
5
), p.
056303
.
26.
Richtmyer
,
R. D.
,
1960
, “
Taylor Instability in Shock Acceleration of Compressible Fluids
,”
Commun. Pure Appl. Math.
,
13
(
2
), pp.
297
319
.
27.
Meshkov
,
E. E.
,
1969
, “
Instability of the Interface of Two Gases Accelerated by a Shock Wave
,”
Fluid Dyn.
,
4
(
5
), pp.
101
104
.
28.
Sharp
,
D. H.
,
1984
, “
An Overview of Rayleigh-Taylor Instability
,”
Phys. D: Nonlinear Phenom.
,
12
(
1–3
), pp.
3
10
.
29.
Brouillette
,
M.
,
2002
, “
The Richtmyer-Meshkov Instability
,”
Annu. Rev. Fluid Mech.
,
34
(
1
), pp.
445
468
.
30.
Bonazza
,
R.
,
2017
, “
A Review of the Richtmyer-Meshkov Instability From an Experimental Perspective
,”
30th International Symposium on Shock Waves
(
ISSW
), Tel-Aviv, Israel, July 19–24, pp.
23
28
.
31.
Zhou
,
Y.
,
2017
, “
Rayleigh-Taylor and Richtmyer-Meshkov Instability Induced Flow, Turbulence, and Mixing—I
,”
Phys. Rep.
, epub.
32.
Zhou
,
Y.
,
2017
, “
Rayleigh-Taylor and Richtmyer-Meshkov Instability Induced Flow, Turbulence, and Mixing—II
,”
Phys. Rep.
, epub.
33.
Flippo
,
K. A.
,
Kline
,
J. L.
,
Doss
,
F. W.
,
Loomis
,
E. N.
,
Emerich
,
M.
,
Devolder
,
B.
,
Murphy
,
T. J.
,
Fournier
,
K. B.
,
Kalantar
,
D. H.
,
Regan
,
S. P.
,
Barrios
,
M. A.
,
Merritt
,
E. C.
,
Perry
,
T. S.
,
Tregillis
,
I. L.
,
Welser-Sherrill
,
L.
, and
Fincke
,
J. R.
,
2014
, “
Development of a Big Area BackLighter for High Energy Density Experiments
,”
Rev. Sci. Instrum.
,
85
(
9
), p.
093501
.
34.
Oertel
,
J. A.
,
Aragonez
,
R.
,
Archuleta
,
T.
,
Barnes
,
C.
,
Casper
,
L.
,
Fatherley
,
V.
,
Heinrichs
,
T.
,
King
,
R.
,
Landers
,
D.
,
Lopez
,
F.
, and
Sanchez
,
P.
,
2006
, “
Gated X-Ray Detector for the National Ignition Facility
,”
Rev. Sci. Instrum.
,
77
(
10
), p.
10E308
.
35.
Nagel
,
S. R.
,
Raman
,
K. S.
,
Huntington
,
C. M.
,
MacLaren
,
S. A.
,
Wang
,
P.
,
Barrios
,
M. A.
,
Baumann
,
T.
,
Bender
,
J. D.
,
Benedetti
,
L. R.
,
Doane
,
D. M.
,
Felker
,
S.
,
Fitzsimmons
,
P.
,
Flippo
,
K. A.
,
Holder
,
J. P.
,
Kaczala
,
D. N.
,
Perry
,
T. S.
,
Seugling
,
R. M.
,
Savage
,
L.
, and
Zhou
,
Y.
,
2017
, “
A Platform for Studying the Rayleigh–Taylor and Richtmyer–Meshkov Instabilities in a Planar Geometry at High Energy Density at the National Ignition Facility
,”
Phys. Plasmas
,
24
(
7
), p.
072704
.
36.
Jacobs
,
J. W.
, and
Krivets
,
V. V.
,
2005
, “
Experiments on the Late-Time Development of Single-Mode Richtmyer–Meshkov Instability
,”
Phys. Fluids
,
17
(
3
), p.
034105
.
37.
Wilson
,
B. M.
,
Mejia-Alvarez
,
R.
, and
Prestridge
,
K. P.
,
2016
, “
Single-Interface Richtmyer–Meshkov Turbulent Mixing at the Los Alamos Vertical Shock Tube
,”
ASME J. Fluids Eng.
,
138
(
7
), p.
070901
.
38.
Orlicz
,
G. C.
,
Balakumar
,
B. J.
,
Tomkins
,
C. D.
, and
Prestridge
,
K. P.
,
2009
, “
A Mach Number Study of the Richtmyer–Meshkov Instability in a Varicose, Heavy-Gas Curtain
,”
Phys. Fluids
,
21
(
6
), p.
064102
.
39.
Dimonte
,
G.
, and
Schneider
,
M.
,
1997
, “
Turbulent Richtmyer–Meshkov Instability Experiments With Strong Radiatively Driven Shocks
,”
Phys. Plasmas
,
4
(
12
), pp.
4347
4357
.
40.
Weber
,
C. R.
,
Clark
,
D. S.
,
Cook
,
A. W.
,
Busby
,
L. E.
, and
Robey
,
H. F.
,
2014
, “
Inhibition of Turbulence in Inertial-Confinement-Fusion Hot Spots by Viscous Dissipation
,”
Phys. Rev. E
,
89
(
5
), p.
053106
.
41.
Haines
,
B. M.
,
Vold
,
E. L.
,
Molvig
,
K.
,
Aldrich
,
C.
, and
Rauenzahn
,
R.
,
2014
, “
The Effects of Plasma Diffusion and Viscosity on Turbulent Instability Growth
,”
Phys. Plasmas
,
21
(
9
), p.
092306
.
42.
Rana
,
V.
,
Lim
,
H.
,
Melvin
,
J.
,
Glimm
,
J.
,
Cheng
,
B.
, and
Sharp
,
D. H.
,
2017
, “
Mixing With Applications to Inertial-Confinement-Fusion Implosions
,”
Phys. Rev. E
,
95
(
1
), p.
013203
.
43.
Vold
,
E. L.
,
Rauenzahn
,
R. M.
,
Aldrich
,
C. H.
,
Molvig
,
K.
,
Simakov
,
A. N.
, and
Haines
,
B. M.
,
2017
, “
Plasma Transport in an Eulerian AMR Code
,”
Phys. Plasmas
,
24
(
4
), p.
042702
.
44.
Thomas
,
V. A.
, and
Kares
,
R. J.
,
2012
, “
Drive Asymmetry and the Origin of Turbulence in an ICF Implosion
,”
Phys. Rev. Lett.
,
109
(
7
), p.
075004
.
45.
Bellei
,
C.
, and
Amendt
,
P. A.
,
2017
, “
Shock-Induced Mix Across an Ideal Interface
,”
Phys. Plasmas
,
24
(
4
), p.
040703
.
46.
Budil
,
K. S.
,
Remington
,
B. A.
,
Peyser
,
T. A.
,
Mikaelian
,
K. O.
,
Miller
,
P. L.
,
Woolsey
,
N. C.
,
Wood-Vasey
,
W. M.
, and
Rubenchik
,
A. M.
,
1996
, “
Experimental Comparison of Classical versus Ablative Rayleigh-Taylor Instability
,”
Phys. Rev. Lett.
,
76
(
24
), p.
4536
.
47.
Peyser
,
T. A.
,
Miller
,
P. L.
,
Stry
,
P. E.
,
Budil
,
K. S.
,
Burke
,
E. W.
,
Wojtowicz
,
D. A.
,
Griswold
,
D. L.
,
Hammel
,
B. A.
, and
Phillion
,
D. W.
,
1995
, “
Measurement of Radiation-Driven Shock-Induced Mixing From Nonlinear Initial Perturbations
,”
Phys. Rev. Lett.
,
75
(
12
), p.
2332
.
48.
Azechi
,
H.
,
Sakaiya
,
T.
,
Fujioka
,
S.
,
Tamari
,
Y.
,
Otani
,
K.
,
Shigemori
,
K.
,
Nakai
,
M.
,
Shiraga
,
H.
,
Miyanaga
,
N.
, and
Mima
,
K.
,
2007
, “
Comprehensive Diagnosis of Growth Rates of the Ablative Rayleigh-Taylor Instability
,”
Phys. Rev. Lett.
,
98
(
4
), p.
045002
.
49.
Aglitskiy
,
Y.
,
Velikovich
,
A. L.
,
Karasik
,
M.
,
Metzler
,
N.
,
Zalesak
,
S. T.
,
Schmitt
,
A. J.
,
Phillips
,
L.
,
Gardner
,
J. H.
,
Serlin
,
V.
,
Weaver
,
J. L.
, and
Obenschain
,
S. P.
,
2010
, “
Basic Hydrodynamics of Richtmyer–Meshkov-Type Growth and Oscillations in the Inertial Confinement Fusion-Relevant Conditions
,”
Philos. Trans. R. Soc. London A: Math., Phys. Eng. Sci.
,
368
(
1916
), pp.
1739
1768
.
50.
Smalyuk
,
V. A.
,
Sadot
,
O.
,
Delettrez
,
J. A.
,
Meyerhofer
,
D. D.
,
Regan
,
S. P.
, and
Sangster
,
T. C.
,
2005
, “
Fourier-Space Nonlinear Rayleigh-Taylor Growth Measurements of 3D Laser-Imprinted Modulations in Planar Targets
,”
Phys. Rev. Lett.
,
95
(
21
), p.
215001
.
51.
Di Stefano
,
C. A.
,
Malamud
,
G.
,
Kuranz
,
C. C.
,
Klein
,
S. R.
,
Stoeckl
,
C.
, and
Drake
,
R. P.
,
2015
, “
Richtmyer-Meshkov Evolution Under Steady Shock Conditions in the High-Energy-Density Regime
,”
Appl. Phys. Lett.
,
106
(
11
), p.
114103
.
52.
Di Stefano
,
C. A.
,
Rasmus
,
A. M.
,
Doss
,
F. W.
,
Flippo
,
K. A.
,
Hager
,
J. D.
,
Kline
,
J. L.
, and
Bradley
,
P. A.
,
2017
, “
Multimode Instability Evolution Driven by Strong, High-Energy-Density Shocks in a Rarefaction-Reflected Geometry
,”
Phys. Plasmas
,
24
(
5
), p.
052101
.
53.
Welser-Sherrill
,
L.
,
Fincke
,
J.
,
Doss
,
F.
,
Loomis
,
E.
,
Flippo
,
K.
,
Offermann
,
D.
,
Keiter
,
P.
,
Haines
,
B.
, and
Grinstein
,
F.
,
2013
, “
Two Laser-Driven Mix Experiments to Study Reshock and Shear
,”
High Energy Density Phys.
,
9
(
3
), pp.
496
499
.
54.
Darlington
,
R. M.
,
McAbee
,
T. L.
, and
Rodrigue
,
G.
,
2002
, “
Large Eddy Simulation and ALE Mesh Motion in Rayleigh–Taylor Instability Simulation
,”
Comput. Phys. Commun.
,
144
(
3
), pp.
261
276
.
55.
Sharp
,
R. W.
, and
Barton
,
R. T.
,
1981
, “
HEMP Advection Model
,” Lawrence Livermore National Laboratory, Livermore, CA, Report No.
UCID-17809
.https://www.osti.gov/scitech/biblio/6737790
56.
Kolev
,
T. V.
, and
Rieben
,
R. N.
,
2009
, “
A Tensor Artificial Viscosity Using a Finite Element Approach
,”
J. Comput. Phys.
,
228
(
22
), pp.
8336
8366
.
57.
Raman
,
K. S.
,
Hurricane
,
O. A.
,
Park
,
H. S.
,
Remington
,
B. A.
,
Robey
,
H.
,
Smalyuk
,
V. A.
,
Drake
,
R. P.
,
Krauland
,
C. M.
,
Kuranz
,
C. C.
,
Hansen
,
J. F.
, and
Harding
,
E. C.
,
2012
, “
Three-Dimensional Modeling and Analysis of a High Energy Density Kelvin-Helmholtz Experiment
,”
Phys. Plasmas
,
19
(
9
), p.
092112
.
58.
Dittrich
,
T. R.
,
Hurricane
,
O. A.
,
Callahan
,
D. A.
,
Dewald
,
E. L.
,
Döppner
,
T.
,
Hinkel
,
D. E.
,
Hopkins
,
L. B.
,
Le Pape
,
S.
,
Ma
,
T.
,
Milovich
,
J. L.
, and
Moreno
,
J. C.
,
2014
, “
Design of a High-Foot High-Adiabat ICF Capsule for the National Ignition Facility
,”
Phys. Rev. Lett.
,
112
(
5
), p.
055002
.
59.
Casey
,
D. T.
,
Smalyuk
,
V. A.
,
Tipton
,
R. E.
,
Pino
,
J. E.
,
Grim
,
G. P.
,
Remington
,
B. A.
,
Rowley
,
D. P.
,
Weber
,
S. V.
,
Barrios
,
M.
,
Benedetti
,
L. R.
, and
Bleuel
,
D. L.
,
2014
, “
Development of the CD Symcap Platform to Study Gas-Shell Mix in Implosions at the National Ignition Facility
,”
Phys. Plasmas
,
21
(
9
), p.
092705
.
60.
Hurricane
,
O. A.
,
Hansen
,
J. F.
,
Robey
,
H. F.
,
Remington
,
B. A.
,
Bono
,
M. J.
,
Harding
,
E. C.
,
Drake
,
R. P.
, and
Kuranz
,
C. C.
,
2009
, “
A High Energy Density Shock Driven Kelvin–Helmholtz Shear Layer Experiment
,”
Phys. Plasmas
,
16
(
5
), p.
056305
.
61.
Clark
,
D. S.
,
Hinkel
,
D. E.
,
Eder
,
D. C.
,
Jones
,
O. S.
,
Haan
,
S. W.
,
Hammel
,
B. A.
,
Marinak
,
M. M.
,
Milovich
,
J. L.
,
Robey
,
H. F.
,
Suter
,
L. J.
, and
Town
,
R. P. J.
,
2013
, “
Detailed Implosion Modeling of Deuterium-Tritium Layered Experiments on the National Ignition Facility
,”
Phys. Plasmas
,
20
(
5
), p.
056318
.
62.
Raman
,
K. S.
,
Smalyuk
,
V. A.
,
Casey
,
D. T.
,
Haan
,
S. W.
,
Hoover
,
D. E.
,
Hurricane
,
O. A.
,
Kroll
,
J. J.
,
Nikroo
,
A.
,
Peterson
,
J. L.
,
Remington
,
B. A.
,
Robey
,
H. F.
,
Clark
,
D. S.
,
Hammel
,
B. A.
,
Landen
,
O. L.
,
Marinak
,
M. M.
,
Munro
,
D. H.
,
Peterson
,
K. J.
, and
Salmonson
,
J.
,
2014
, “
An In-Flight Radiography Platform to Measure Hydrodynamic Instability Growth in Inertial Confinement Fusion Capsules at the National Ignition Facility
,”
Phys. Plasmas
,
21
(
7
), p.
072710
.
63.
Wang
,
P.
,
Zhou
,
Y.
,
MacLaren
,
S. A.
,
Huntington
,
C. M.
,
Raman
,
K. S.
,
Doss
,
F. W.
, and
Flippo
,
K. A.
,
2015
, “
Three-and Two-Dimensional Simulations of Counter-Propagating Shear Experiments at High Energy Densities at the National Ignition Facility
,”
Phys. Plasmas
,
22
(
11
), p.
112701
.
64.
Hurricane
,
O. A.
,
Smalyuk
,
V. A.
,
Raman
,
K.
,
Schilling
,
O.
,
Hansen
,
J. F.
,
Langstaff
,
G.
,
Martinez
,
D.
,
Park
,
H. S.
,
Remington
,
B. A.
,
Robey
,
H. F.
, and
Greenough
,
J. A.
,
2012
, “
Validation of a Turbulent Kelvin-Helmholtz Shear Layer Model Using a High-Energy-Density Omega Laser Experiment
,”
Phys. Rev. Lett.
,
109
(
15
), p.
155004
.
65.
Morgan
,
B. E.
, and
Wickett
,
M. E.
,
2015
, “
Three-Equation Model for the Self-Similar Growth of Rayleigh-Taylor and Richtmyer-Meskov Instabilities
,”
Phys. Rev. E
,
91
(
4
), p.
043002
.
66.
Morgan
,
B. E.
, and
Greenough
,
J. A.
,
2016
, “
Large-Eddy and Unsteady RANS Simulations of a Shock-Accelerated Heavy Gas Cylinder
,”
Shock Waves
,
26
(
4
), pp.
355
383
.
67.
Olson
,
B. J.
, and
Greenough
,
J.
,
2014
, “
Large Eddy Simulation Requirements for the Richtmyer-Meshkov Instability
,”
Phys. Fluids
,
26
(
4
), p.
044103
.
68.
McFarland
,
J. A.
,
Greenough
,
J. A.
, and
Ranjan
,
D.
,
2013
, “
Investigation of the Initial Perturbation Amplitude for the Inclined Interface Richtmyer–Meshkov Instability
,”
Phys. Scripta
,
2013
, p.
014014
.
69.
McFarland
,
J. A.
,
Reilly
,
D.
,
Black
,
W.
,
Greenough
,
J. A.
, and
Ranjan
,
D.
,
2015
, “
Modal Interactions Between a Large-Wavelength Inclined Interface and Small-Wavelength Multimode Perturbations in a Richtmyer-Meshkov Instability
,”
Phys. Rev. E
,
92
(
1
), p.
013023
.
70.
Henry de Frahan
,
M. T.
,
Belof
,
J. L.
,
Cavallo
,
R. M.
,
Raevsky
,
V. A.
,
Ignatova
,
O. N.
,
Lebedev
,
A.
,
Ancheta
,
D. S.
,
El-dasher
,
B. S.
,
Florando
,
J. N.
,
Gallegos
,
G. F.
,
Johnsen
,
E.
, and
LeBlanc
,
M. M.
,
2015
, “
Experimental and Numerical Investigations of Beryllium Strength Models Using the Rayleigh-Taylor Instability
,”
J. Appl. Phys.
,
117
(
22
), p.
225901
.
71.
Harte
,
J. A.
,
Alley
,
W. E.
,
Bailey
,
D. S.
,
Eddleman
,
J. L.
, and
Zimmerman
,
G. B.
, 1996, “
LASNEX—A 2-D Physics Code for Modeling ICF
,” Lawrence Livermore National Laboratory, Livermore, CA, Report No.
UCRL-LR-105821-96-4
.https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiQpNy-r_fXAhVBOSYKHVd4D5gQFggmMAA&url=http%3A%2F%2Fwww.ibrarian.net%2Fnavon%2Fpaper%2FLASNEX__A_2_D_P_HYSICSCODE_FORMODELINGICF.pdf%3Fpaperid%3D4395096&usg=AOvVaw1w1uJAVQkA6Hp8PxEJYpYA
72.
Suter
,
L. J.
,
Kauffman
,
R. L.
,
Darrow
,
C. B.
,
Hauer
,
A. A.
,
Kornblum
,
H.
,
Landen
,
O. L.
,
Orzechowski
,
T. J.
,
Phillion
,
D. W.
,
Porter
,
J. L.
,
Powers
,
L. V.
,
Richard
,
A.
,
Rosen
,
M. D.
,
Thiessen
,
A. R.
, and
Wallace
,
R.
,
1996
, “
Radiation Drive in Laser‐Heated Hohlraums
,”
Phys. Plasmas
,
3
(
5
), pp.
2057
2062
.
73.
Olson
,
R. E.
,
Bradley
,
D. K.
,
Rochau
,
G. A.
,
Collins
,
G. W.
,
Leeper
,
R. J.
, and
Suter
,
L. J.
,
2006
, “
Time-Resolved Characterization of Hohlraum Radiation Temperature Via Interferometer Measurement of Quartz Shock Velocity
,”
Rev. Sci. Instrum.
,
77
(
10
), p.
10E523
.
74.
Hurricane
,
O. A.
,
Glendinning
,
S. G.
,
Remington
,
B. A.
,
Drake
,
R. P.
, and
Dannenberg
,
K. K.
,
2001
, “
Late-Time Hohlraum Pressure Dynamics in Supernova Remnant Experiments
,”
Phys. Plasmas
,
8
(
6
), pp.
2609
2612
.
75.
Childs
,
H.
,
Brugger
,
E.
,
Whitlock
,
B.
,
Meredith
,
J.
,
Ahern
,
S.
,
Pugmire
,
D.
,
Biagas
,
K.
,
Miller
,
M.
,
Harrison
,
C.
,
Weber G. H.
,
Krishnan
,
H.
,
Fogal
,
T.
,
Sanderson
,
A.
,
Garth
,
C.
,
Bethel
,
E. W.
,
Camp
,
D.
,
Rubel
,
O.
,
Durant
,
M.
,
Favre
,
J.
, and
Navratil
,
P.
,
2012
, “
VisIt: An End-User Tool for Visualization and Analyzing Very Large Data
,”
High Performance Visualization: Enabling Extreme-Scale Scientific Insight
(CRC Computational Science Series), Taylor and Francis, Boca Raton, FL, p.
1
.
76.
Doss
,
F. W.
,
Robey
,
H. F.
,
Drake
,
R. P.
, and
Kuranz
,
C. C.
,
2009
, “
Wall Shocks in High-Energy-Density Shock Tube Experiments
,”
Phys. Plasmas
,
16
(
11
), p.
112705
.
77.
Aufderheide
,
M. B.
,
Henderson
,
G.
,
von Wittenau
,
A. E. S.
,
Slone
,
D. M.
, and
Martz
,
H. E.
,
2004
, “
HADES, a Code for Simulating a Variety of Radiographic Techniques
,” IEEE Symposium Conference Record Nuclear Science (
NSSMIC
), Rome, Italy, Oct. 16–22, pp.
2579
2583
.
78.
Haan
,
S. W.
,
1989
, “
Onset of Nonlinear Saturation for Rayleigh-Taylor Growth in the Presence of a Full Spectrum of Modes
,”
Phys. Rev. A
,
39
(
11
), p.
5812
.
79.
Goncharov
,
V. N.
,
2002
, “
Analytical Model of Nonlinear, Single-Mode, Classical Rayleigh-Taylor Instability at Arbitrary Atwood Numbers
,”
Phys. Rev. Lett.
,
88
(
13
), p.
134502
.
80.
Zhang
,
Q.
, and
Guo
,
W.
,
2016
, “
Universality of Finger Growth in Two-Dimensional Rayleigh–Taylor and Richtmyer–Meshkov Instabilities With All Density Ratios
,”
J. Fluid Mech.
,
786
, pp.
47
61
.
81.
Thornber
,
B.
,
Drikakis
,
D.
,
Youngs
,
D. L.
, and
Williams
,
R. J. R.
,
2010
, “
The Influence of Initial Conditions on Turbulent Mixing Due to Richtmyer–Meshkov Instability
,”
J. Fluid Mech.
,
654
, pp.
99
139
.
82.
Tritschler
,
V. K.
,
Olson
,
B. J.
,
Lele
,
S. K.
,
Hickel
,
S.
,
Hu
,
X. Y.
, and
Adams
,
N. A.
,
2014
, “
On the Richtmyer–Meshkov Instability Evolving From a Deterministic Multimode Planar Interface
,”
J. Fluid Mech.
,
755
, pp.
429
462
.
83.
Zhou
,
Y.
,
Cabot
,
W. H.
, and
Thornber
,
B.
,
2016
, “
Asymptotic Behavior of the Mixed Mass in Rayleigh–Taylor and Richtmyer–Meshkov Instability Induced Flows
,”
Phys. Plasmas
,
23
(
5
), p.
052712
.
You do not currently have access to this content.