Present investigation deals with the interaction of an incident oblique shock wave on a turbulent boundary layer over a wavy surface. The oblique shock wave was generated by an 8 deg wedge in a freestream Mach number of 2.0. Three-dimensional (3D) Reynolds-averaged Navier–Stokes (RANS) equations with k–ω shear stress transport (SST) turbulence model were used for numerical computation. The computed results are in good agreement with the experimental measurement and direct numerical simulation (DNS) data in case of the interaction of an oblique shock with plain flat plate. To identify the effect of surface waviness on shock wave/turbulent boundary layer interaction (SWBLI), a section of the flat plate was replaced by a wavy surface. Computations have been conducted for different magnitudes of wavy amplitude. Further, the wavelength of the wavy surface has been varied. Results showed that the presence of wavy surface induces supplementary shock and expansion waves in the flow field, which are referred as topographic waves. This supplementary system of waves interacts with the counterpart of intrinsic SWBLI in a complex manner. Flow structure, separation behavior, and aerodynamic characteristics are studied. It is revealed that the amplitude is dominant than the wavelength of waviness in case of SWBLI on a wavy surface.

References

References
1.
Dupont
,
P.
,
Haddad
,
C.
, and
Debiève
,
J.-F.
,
2006
, “
Space and Time Organization in a Shock-Induced Separated Boundary Layer
,”
J. Fluid Mech.
,
559
, pp.
255
277
.
2.
Clemens
,
N. T.
, and
Narayanaswamy
,
V.
,
2014
, “
Low-Frequency Unsteadiness of Shock Wave/Turbulent Boundary Layer Interactions
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
469
492
.
3.
Dolling
,
D. S.
,
2001
, “
Fifty Years of Shock Wave/Boundary-Layer Interaction Research: What Next?
,”
AIAA J.
,
39
(
8
), pp.
1517
1531
.
4.
Babinsky
,
H.
, and
Harvey
,
J. K.
,
2011
,
Shock Wave-Boundary-Layer Interactions
,
Cambridge University Press
,
Cambridge, UK
.
5.
Latin
,
R. M.
, and
Bowersox
,
R. D. W.
,
2000
, “
Flow Properties of a Supersonic Turbulent Boundary Layer With Wall Roughness
,”
AIAA J.
,
38
(
10
), pp.
1804
1821
.
6.
Latin
,
R. M.
, and
Bowersox
,
R. D. W.
,
2002
, “
Temporal Turbulent Flow Structure for Supersonic Rough-Wall Boundary Layers
,”
AIAA J.
,
40
(5), pp.
832
841
.
7.
Ekoto
,
I. W.
,
Bowersox
,
R. D. W.
,
Beutner
,
T.
, and
Goss
,
L.
,
2008
, “
Supersonic Boundary Layers With Periodic Surface Roughness
,”
AIAA J.
,
46
(
2
), pp.
486
497
.
8.
Muppidi
,
S.
, and
Mahesh
,
K.
,
2012
, “
Direct Numerical Simulations of Roughness-Induced Transition in Supersonic Boundary Layers
,”
J. Fluid Mech.
,
693
, pp.
28
56
.
9.
Tyson
,
C. J.
, and
Sandham
,
N. D.
,
2013
, “
Numerical Simulation of Fully-Developed Compressible Flows Over Wavy Surfaces
,”
Int. J. Heat Fluid Flow
,
41
, pp.
2
15
.
10.
Babinsky
,
H.
, and
Inger
,
G. R.
, “
Effect of Surface Roughness on Unseparated Shock Wave/Turbulent Boundary-Layer Interaction
,”
AIAA J.
,
40
(
8
), pp.
1567
1573
.
11.
Yan
,
H.
,
Zhang
,
W.-M.
,
Peng
,
Z.-K.
, and
Meng
,
G.
,
2015
, “
Effects of Three-Dimensional Surface Topography on Gas Flow in Rough Micronozzles
,”
ASME J. Fluids Eng.
,
137
(5), p.
051202
.
12.
Wayne
,
P. J.
,
Vorobiett
,
P.
,
Smyth
,
H.
,
Bernard
,
T.
,
Corbin
,
C.
,
Maloney
,
A.
,
Conroy
,
A.
,
White
,
R.
,
Anderson
,
M.
,
Kumar
,
S.
,
Truman
,
C. R.
, and
Deepti
,
S.
,
2013
, “
Shock-Driven Particle Transport Off Smooth and Rough Surface
,”
ASME J. Fluids Eng.
,
135
(6), p.
061302
.
13.
Polivanov
,
P. A.
,
Sidorenko
,
A. A.
, and
Maslov
,
A. A.
,
2011
, “
Correlation Study in Shock Wave-Turbulent Boundary Layer Interaction
,”
Shock Waves
,
21
(3), pp.
193
203
.
14.
Polivanov
,
P. A.
,
Sidorenko
,
A.
, and
Maslov
,
A. A.
,
2009
, “Experimental Study of Unsteady Effects in Shock Wave/Turbulent Boundary Layer Interaction,”
AIAA
Paper No. 2009-409.
15.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(8), pp.
1598
1605
.
16.
Wilcox
,
C.
,
1988
, “
Multiscale Model for Turbulent Flows
,”
AIAA J.
,
26
(
11
), pp.
1311
1320
.
17.
Hasan
,
A. B. M. T.
,
2014
, “
Characteristics of Overexpanded Nozzle Flows in Imposed Oscillating Condition
,”
Int. J. Heat Fluid Flow
,
46
, pp.
70
83
.
18.
Balabel
,
A.
,
Hageb
,
A. M.
,
Nasr
,
M.
, and
El-Behery
,
S. M.
,
2011
, “
Assessment of Turbulence Modeling for Gas Flow in Two-Dimensional Convergent-Divergent Rocket Nozzle
,”
Appl. Math. Model.
,
35
(7), pp.
3408
3422
.
19.
Strasse
,
W.
,
2011
, “
Towards the Optimization of a Pulsatile Three-Stream Coaxial Airblast Injector
,”
Int. J. Multiphase Flow
,
37
(7), pp.
831
844
.
21.
Acquaye
,
F. K.
,
2016
, “Evaluation of Various Turbulence Models for Shock Wave Boundary Layer Interaction Flows,”
Master's thesis
, Washington University, St Louis, MO.http://openscholarship.wustl.edu/eng_etds/176/
22.
Asproulias
,
I.
,
Revell
,
A. J.
, and
Craft
,
T. J.
,
2015
, “
Modelling Shock Wave/Boundary Layer Interactions Using Advanced RANS Models
,”
29th International Symposium on Shock Waves
(
ISSW
), Madison, WI, July 14–19, pp. 1235–1240.
23.
Liou
,
M. S.
,
1996
, “
A Sequel to AUSM: AUSM+
,”
J. Comput. Phys.
,
129
(2), pp.
364
382
.
24.
Weiss
,
J. M.
,
Maruszewski
,
J. P.
, and
Smith
,
W. A.
,
1997
, “Implicit Solution of the Navier-Stokes Equations on Unstructured Meshes,”
AIAA
Paper No. 97-2103.https://arc.aiaa.org/doi/abs/10.2514/6.1997-2103
25.
Pirozzoli
,
S.
, and
Grasso
,
F.
,
2006
, “
Direct Numerical Simulation of Impinging Shock Wave/Turbulent Boundary Layer Interaction at M=2.25
,”
Phys. Fluids
,
18
(6), p.
065113
.
26.
Deleuze
,
J.
,
1995
, “
Structure d'une couch limite turbulente soumise a une onde de choc incidente
,” Ph.D. thesis, Aix-Marseille Université, Provence, France.
27.
Laurent
,
H.
,
1996
, “
Turbulence d'une interaction onde de choc/couche limite surune paroi plane adiabatique ou chaufée
,” Ph.D. thesis, Aix-Marseille Université, Provence, France.
You do not currently have access to this content.