Simulations of oscillatory motion in partially filled rectangular tanks with different tank geometries, fullness ratios, and motion frequencies are presented. Smoothed particle hydrodynamics (SPH) method is used to discretize the governing equations together with new velocity variance-based free surface (VFS) and artificial particle displacement (APD) algorithms to enhance the robustness and the accuracy of the numerical scheme. Two-dimensional (2D) oscillatory motion is investigated for three different scenarios where the first one scrutinizes the kinematic characteristics in resonance conditions, the second one covers a wave response analysis in a wide range of enforced motion frequencies, and the last one examines the dynamic properties of the fluid motion in detail. The simulations are carried on for at least 50 periods in the wave response analysis. It is shown that numerical results of the proposed SPH scheme are in match with experimental and numerical findings of the literature.

References

References
1.
Lee
,
S. J.
,
Kim
,
M. H.
,
Lee
,
D. H.
,
Kim
,
J. W.
, and
Kim
,
Y. H.
,
2007
, “
The Effect of LNG Tank Sloshing on the Global Motions of LNG Carriers
,”
Ocean Eng.
,
34
(
1
), pp.
10
20
.
2.
Delorme
,
L.
,
Iglesias
,
S.
, and
Perez
,
S.
,
2005
, “
Sloshing Loads Simulation in LNG Tankers With SPH
,”
International Conference on Computational Methods in Marine Engineering
(
MARINE
), Oslo, Norway, June 27–29, pp.
1
10
.https://www.researchgate.net/publication/228797725_Sloshing_loads_simulation_in_LNG_tankers_with_SPH
3.
Delorme
,
L.
,
Colagrossi
,
A.
,
Iglesias
,
S.
,
Rodriguez
,
R.
, and
Botia-Vera
,
E.
,
2009
, “
A Set of Canonical Problems in Sloshing—Part I: Pressure Field in Forced Roll Comparison Between Experimental Results and SPH
,”
Ocean Eng.
,
36
(
2
), pp.
168
178
.
4.
Servan-Camas
,
B.
,
Cercos-Pita
,
J. L.
,
Garcia-Espinoza
,
J.
, and
Souto-Iglesias
,
A.
,
2016
, “
Time Domain Simulation of Coupled Sloshing Seakeeping Problems by SPH FEM Coupling
,”
Ocean Eng.
,
123
(
7
), pp.
383
396
.
5.
Faltinsen
,
O. M.
, and
Timokha
,
A. N.
,
2009
,
Sloshing
,
Cambridge University Press
, Cambridge, UK.
6.
Okamoto
,
T.
, and
Kawahara
,
M.
,
1990
, “
Two Dimensional Sloshing Analysis by Lagrangian Finite Element Method
,”
Int. J. Numer. Methods Fluids
,
11
(
5
), pp.
453
477
.
7.
Wang
,
C.
,
Teng
,
J.
, and
Huang
,
G.
,
2011
, “
Numerical Simulation of Sloshing Motion Inside a Two Dimensional Rectangular Tank by Level Set Method
,”
Int. J. Numer. Methods Heat Fluid Flow
,
21
(
1
), pp.
5
31
.
8.
Guorong
,
Y.
,
Subhask
,
R.
, and
Kamran
,
S.
,
2009
, “
Experimental Study of Liquid Slosh Dynamics in a Partially-Filled Tank
,”
ASME J. Fluids Eng.
,
131
(
7
), p.
071303
.
9.
Shin
,
H. R.
,
2005
, “
Unstructured Grid Based Reynolds-Averaged Navier-Stokes Method for Liquid Tank Sloshing
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
572
582
.
10.
Gotoh
,
H.
,
Khayyer
,
A.
,
Ikari
,
H.
,
Arikawa
,
T.
, and
Shimosako
,
K.
,
2014
, “
On Enhancement of Incompressible SPH Method for Simulation of Violent Sloshing Flows
,”
Appl. Ocean Res.
,
46
, pp.
104
115
.
11.
Faltinsen
,
O.
, and
Timokha
,
A.
,
2001
, “
An Adaptive Multimodal Approach to Nonlinear Sloshing in a Rectangular Tank
,”
J. Fluid Mech.
,
432
, pp.
167
200
.https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/an-adaptive-multimodal-approach-to-nonlinear-sloshing-in-a-rectangular-tank/D520FD5608316B33C3B778922EAF0FFC
12.
Faltinsen
,
O.
, and
Timokha
,
A.
,
2002
, “
Asymptotic Modal Approximation of Nonlinear Resonant Sloshing in a Rectangular Tank With Small Fluid Depth
,”
J. Fluid Mech.
,
470
, pp.
319
357
.
13.
Chen
,
Y.
,
Djidjeli
,
K.
, and
Price
,
W.
,
2009
, “
Numerical Simulation of Liquid Sloshing Phenomena in Partially Filled Containers
,”
Comput. Fluids
,
38
(
4
), pp.
830
842
.
14.
Monaghan
,
J.
, and
Gingold
,
R.
,
1977
, “
Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars
,”
Mon. Not. R. Astron. Soc.
,
181
(
3
), pp.
375
389
.
15.
Lucy
,
L.
,
1977
, “
Numerical Approach to Testing the Fission Hypothesis
,”
Astron. J.
,
82
, pp.
1013
1024
.
16.
Koshizuka
,
S.
, and
Oka
,
Y.
,
1996
, “
Moving Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid
,”
Nucl. Sci. Eng.
,
123
(
3
), pp.
421
434
.
17.
Khayyer
,
A.
, and
Gotoh
,
H.
,
2013
, “
Enhancement of Performance and Stability of MPS Mesh-Free Particle Method for Multiphase Flows Characterized by High Density Ratios
,”
J. Comput. Phys.
,
242
, pp.
211
233
.
18.
Antuono
,
M.
,
Colagrossi
,
A.
,
Marrone
,
S.
, and
Molteni
,
D.
,
2010
, “
Free Surface Flows Solved by Means of SPH Schemes With Numerical Diffusive Term
,”
Comput. Phys. Commun.
,
181
(
3
), pp.
532
549
.
19.
Rafiee
,
A.
,
Cummins
,
S.
,
Rudman
,
M.
, and
Thiagarajan
,
K.
,
2012
, “
Comparative Study on the Accuracy and Stability of SPH Schemes in Simulating Energetic Free Surface Flows
,”
Eur. J. Mech. B
,
36
, pp.
1
16
.
20.
Chowdhurry
,
S.
, and
Sannasiraj
,
S.
,
2014
, “
Numerical Simulation of 2D Sloshing Waves Using SPH With Diffusive Terms
,”
Appl. Ocean Res.
,
47
, pp.
219
240
.
21.
Cao
,
X. Y.
,
Ming
,
F. R.
, and
Zhang
,
A. M.
,
2014
, “
Sloshing in a Rectangular Tank Based on SPH Simulation
,”
Appl. Ocean Res.
,
47
, pp.
241
254
.
22.
Meringolo
,
D.
,
Colagrossi
,
A.
,
Marrone
,
S.
, and
Aristodemo
,
F.
,
2017
, “
On the Filtering of Acoustic Components in Weakly-Compressible SPH Simulations
,”
J. Fluids Struct.
,
70
, pp.
1
23
.
23.
Pakozdi
,
C.
,
2008
, “
A Smoothed Particle Hydrodynamics Study of Two-Dimensional Nonlinear Sloshing in Rectangular Tanks
,” Ph.D. thesis, Norwegian University of Science and Technology, Trondheim, Norway.
24.
Monaghan
,
J.
, and
Kos
,
A.
,
1999
, “
Solitary Waves on a Cretan Beach
,”
ASCE J. Waterw. Port Coastal Ocean Eng.
,
125
(
3
), pp.
145
154
.
25.
Shadloo
,
M.
,
Zainali
,
A.
,
Sadek
,
H.
, and
Yildiz
,
M.
,
2011
, “
Improved Incompressible Smoothed Particle Hydrodynamics Method for Simulating Flow Around Bluff Bodies
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
9–12
), pp.
1008
1020
.
26.
Liu
,
M.
, and
Liu
,
G.
,
2010
, “
Smoothed Particle Hydrodynamics: An Overview and Recent Developments
,”
Arch. Comput. Methods Eng.
,
17
(
1
), pp.
25
76
.
27.
von Neumann
,
J.
, and
Richtmyer
,
R.
,
1950
, “
A Method for the Numerical Calculation of Hydrodynamic Shocks
,”
J. Appl. Phys.
,
21
(
3
), pp.
232
247
.
28.
Antuono
,
M.
,
Colagrossi
,
A.
,
Marrone
,
S.
, and
Lugni
,
C.
,
2011
, “
Propagation of Gravity Waves Through an SPH Scheme With Numerical Diffusive Terms
,”
Comput. Phys. Commun.
,
182
(
4
), pp.
866
877
.
29.
Ozbulut
,
M.
,
Yildiz
,
M.
, and
Goren
,
O.
,
2014
, “
A Numerical Investigation Into the Correction Algorithms for SPH Method in Modeling Violent Free Surface Flows
,”
Int. J. Mech. Sci.
,
79
, pp.
56
65
.
30.
Antuono
,
M.
,
Colagrossi
,
A.
, and
Marrone
,
S.
,
2012
, “
Numerical Diffusive Terms in Weakly-Compressible SPH Schemes
,”
Comput. Phys. Commun.
,
183
(
12
), pp.
2570
2580
.
31.
Meringolo
,
D.
,
Colagrossi
,
A.
,
Aristodemo
,
F.
, and
Veltri
,
P.
,
2015
, “
SPH Numerical Modeling of Wave-Perforated Breakwater Interaction
,”
Coastal Eng.
,
101
, pp.
48
68
.
32.
Meringolo
,
D.
,
Colagrossi
,
A.
,
Aristodemo
,
F.
, and
Veltri
,
P.
,
2015
, “
Assessment of Dynamic Pressures at Vertical and Perforated Breakwaters Through Diffusive SPH Schemes
,”
Math. Probl. Eng.
,
2015
, p.
305028
.
33.
Nomeritae
,
N.
,
Daly
,
E.
,
Grimaldi
,
S.
, and
Bui
,
H.
,
2016
, “
Explicit Incompressible SPH Algorithm for Free-Surface Flow Modelling: A Comparison With Weakly Compressible Schemes
,”
Adv. Water Resour.
,
97
, pp.
156
167
.
34.
Shepard
,
D.
,
1968
, “
A Two Dimensional Interpolation Function for Irregularly-Spaced Data
,”
23rd ACM National Conference
, Las Vegas, NV, Aug. 27–29, pp.
517
524
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.154.6880&rep=rep1&type=pdf
You do not currently have access to this content.