Three-dimensional (3D) curved wall jets are a significant topic in various applications related to local heat and mass transfer. This study investigates the effects of the impinging angle and Reynolds number with a fixed distance from the nozzle to the surface of a cylinder. The particle image velocimetry (PIV) method was used to measure the mean streamwise velocity profiles, which were normalized by the maximum velocity along the centerline of the impinging jet onto the cylinder. After the impingement of the circular jet, a 3D curved wall jet develops on the cylinder surface due to the Coanda effect. At a given Reynolds number, the initial momentum of the wall jet increases, and flow separation occurs further downstream than in normal impingement as the impinging angle increases. At a given impinging angle, flow separation is delayed with increasing Reynolds number. A self-preserving wall jet profile was not attained in the 3D curved wall jet. The turbulence intensity and the Reynolds shear stress were obtained to analyze the turbulence characteristics. The radial turbulence intensity showed similar tendencies to a two-dimensional (2D) curved wall jet, but the streamwise turbulence intensity was dissimilar. The Reynolds shear stress decreases downstream of the cylinder wall due to the decreased velocity and centrifugal force.

References

References
1.
Champagne
,
F. H.
, and
Wygnanski
,
I. J.
,
1971
, “
An Experimental Investigation of Coaxial Turbulent Jets
,”
Int. J. Heat Mass Transfer
,
14
(9), pp.
1445
1464
.
2.
Irwin
,
H. P. A. H.
, and
Smith
,
A. P.
,
1975
, “
Prediction of the Effect of Streamline Curvature on Turbulence
,”
Phys. Fluids
,
18
(6), pp.
624
630
.
3.
Kobayashi
,
R.
, and
Fujisawa
,
N.
,
1983
, “
Curvature Effects on Two-Dimensional Turbulent Wall Jets
,”
Ing.-Arch.
,
53
(6), pp.
409
417
.
4.
Alcaraz
,
E.
,
Charnay
,
G.
, and
Mathieu
,
J.
,
1977
, “
Measurements in a Wall Jet Over a Convex Surface
,”
Phys. Fluids
,
20
(2), pp.
203
210
.
5.
Rostamy
,
N.
,
Bergstrom
,
D. J.
,
Sumner
,
D.
, and
Bugg
,
J. D.
,
2011
, “
An Experimental Study of a Turbulent Wall Jet on Smooth and Transitionally Rough Surfaces
,”
ASME J. Fluids Eng.
,
133
(11), p. 111207.
6.
Launder
,
B. E.
, and
Rodi
,
W.
,
1981
, “
The Turbulent Wall Jet
,”
Prog. Aerosp. Sci.
,
19
, pp.
81
128
.
7.
Launder
,
B. E.
, and
Rodi
,
W.
,
1983
, “
The Turbulent Wall Jet Measurements and Modeling
,”
Annu. Rev. Fluid Mech.
,
15
, pp.
429
459
.
8.
Wilson
,
D. J.
, and
Goldstein
,
R. J.
,
1976
, “
Turbulent Wall Jets With Cylindrical Streamwise Surface Curvature
,”
ASME J. Fluids Eng.
,
98
(3), pp.
550
557
.
9.
Neuendorf
,
R.
, and
Wygnanski
,
I.
,
1999
, “
On a Turbulent Wall Jet Flowing Over a Circular Cylinder
,”
J. Fluid Mech.
,
381
, pp.
1
25
.
10.
Neuendorf
,
R.
,
Lourenco
,
L.
, and
Wygnanski
,
I.
,
2004
, “
On Large Streamwise Structures in a Wall Jet Flowing Over a Circular Cylinder
,”
Phys. Fluids
,
16
(7), pp.
2158
2169
.
11.
Han
,
G.
,
De Zhou
,
M.
, and
Wygnanski
,
I.
,
2006
, “
On Streamwise Vortices and Their Role in the Development of a Curved Wall Jet
,”
Phys. Fluids
,
18
, p. 095104.
12.
Danon
,
R.
,
Gregory
,
J. W.
, and
Greenblatt
,
D.
,
2016
, “
Transient Wall-Jet Flowing over a Circular Cylinder
,”
Exp. Fluids
,
57
(
141
), pp.
1
14
.
13.
Brahma
,
R. K.
,
Faruque
,
O.
, and
Arora
,
R. C.
,
1991
, “
Experimental Investigation of Mean Flow Characteristics of Slot Jet Impingement on a Cylinder
,”
Wärme- Und Stoffübertragung
,
26
(5), pp.
257
263
.
14.
Lee
,
D. H.
,
Chung
,
Y. S.
, and
Kim
,
D. S.
,
1997
, “
Turbulent Flow and Heat Transfer Measurements on a Curved Surface With a Fully Developed Round Impinging Jet
,”
Int. J. Heat Fluid Flow
,
18
(1), pp.
160
169
.
15.
Chan
,
T. L.
,
Zhou
,
Y.
,
Liu
,
M. H.
, and
Leung
,
C. W.
,
2003
, “
Mean Flow and Turbulence Measurements of the Impingement Wall Jet on a Semi-Circular Convex Surface
,”
Exp. Fluids
,
34
(1), pp.
140
149
.
16.
Esirgemez
,
E.
,
Newby
,
J. W.
,
Nott
,
C.
,
Ölçmen
,
S. M.
, and
Ötügen
,
V.
,
2007
, “
Experimental Study of a Round Jet Impinging on a Convex Cylinder
,”
Meas. Sci. Technol.
,
18
, pp.
1800
1810
.
17.
Yi
,
S. J.
,
Kim
,
M.
,
Kim
,
D.
,
Kim
,
H. D.
, and
Kim
,
K. C.
,
2016
, “
Transient Temperature Field and Heat Transfer Measurement of Oblique Jet Impingement by Thermographic Phosphor
,”
Int. J. Heat Mass Transfer
,
102
, pp.
691
702
.
18.
CÎRCIU
,
I.
, and
BOŞCOIANU
,
M.
,
2010
, “
An Analysis of the Efficiency of Coanda-NOTAR Anti-Torque Systems for Small Helicopters
,”
INCAS Bull.
,
2
(4), pp.
81
88
.
19.
New
,
T. H.
, and
Long
,
J.
,
2015
, “
Dynamics of Laminar Circular Jet Impingement Upon Convex Cylinders
,”
Phys. Fluids
,
27
(2), p.
024109
.
20.
Keane
,
R. D.
, and
Adrian
,
R. J.
,
1992
, “
Theory of Cross-Correlation Analysis of PIV Images
,”
Appl. Sci. Res.
,
49
(3), pp.
191
215
.
21.
Melling
,
A.
,
1997
, “
Tracer Particles and Seeding for Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(12), pp.
1406
1416
.
22.
Cornaro
,
J. C.
,
Fleischer
,
A. S.
, and
Goldstein
,
R. J.
,
1999
, “
Flow Visualization of a Round Jet Impinging on Cylindrical Surfaces
,”
Exp. Therm. Fluid Sci.
,
20
(2), pp.
66
78
.
23.
Fleischer
,
A. S.
,
Kramer
,
K.
, and
Goldstein
,
R. J.
,
2001
, “
Dynamics of the Vortex Structure of a Jet Impinging on a Convex Surface
,”
Exp. Therm. Fluid Sci.
,
24
(3–4), pp.
169
175
.
24.
Khayrullina
,
A.
,
van Hooff
,
T.
,
Blocken
,
B.
, and
van Heijst
,
G. J. F.
,
2017
, “
PIV Measurements of Isothermal Plane Turbulent Impinging Jets at Moderate Reynolds Numbers
,”
Exp. Fluids
,
58
(
31
), pp.
1
16
.
You do not currently have access to this content.