Entrained air in oil can cause malfunctions and damages within hydraulic systems. In this paper, we extend existing approaches to reduce the amount of entrained air by separating air bubbles from oil using filter elements. The aim of this study was to investigate the ability of different untreated and surface modified woven and nonwoven fabrics (NWF) to separate air bubbles from oil when directly integrated into an intake socket of an oil pump. An experimental setup was constructed to generate entrained air in oil and to characterize changes in oil aeration and pressure drop induced by the filters. Measurements were conducted at volume flow rates of 2.2 and 5.4 l/min with an inflow angle normal to the filter elements. The developed setup and aeration measurement method proved to be suitable to generate entrained air in oil in a reproducible manner and to accurately characterize aerated oil up to air contents of about 5%. Significant influences on the aeration characteristics were found only for the NWF. Whereas the number of air bubbles decreased by up to 33% relative to the values in the oil reservoir for a flow rate of 2.2 l/min, a significant reduction of the volumetric air ratio could not be achieved as resulting bubble distributions comprised a higher number of large bubbles. We suggest that the lack of effective bubble separation was a result of the flow-induced pressure drop by the filters, which increased with the flow rate.

References

References
1.
Kramer
,
H. G. F.
,
1965
, “
Ursachen und Auswirkungen des Auftretens von Luft in Ölhydraulischen Systemen und Maßnahmen zu dessen Verhinderung
,”
TZ Prakt. Metallbearb.
,
59
(
12
), pp.
801
803
.
2.
Totten
,
G. E.
,
Sun
,
Y.
, and
Bishop
,
R. J.
,
1997
, “
Hydraulic Fluids: Foaming, Air Entrainment, and Air Release—A Review
,”
SAE
Paper No. 972789.
3.
Duncanson
,
M.
,
2003
, “
Effects of Physical and Chemical Properties on Foam in Lubricating Oils
,”
Lubr. Eng.
,
59
(
5
), pp.
9
13
.
4.
Tian
,
H.
, and
Van de Ven
,
J. D.
,
2017
, “
Modeling and Experimental Studies on the Absorption of Entrained Gas and the Influence on Fluid Compressibility
,”
ASME J. Fluids Eng.
,
139
(
10
), p.
101301
.
5.
Schrank
,
K.
,
Murrenhoff
,
H.
, and
Stammen
,
C.
,
2014
, “
Investigation of Different Methods to Measure the Entrained Air Content in Hydraulic Oils
,”
ASME
Paper No. FPMC2014-7823.
6.
Will
,
D.
, and
Gebhardt
,
N.
,
2011
,
Hydraulik: Grundlagen, Komponenten, Schaltungen
,
Springer
,
Berlin
.
7.
Gülker
,
E.
,
1964
, “
Schaumbildung und deren Ursachen
,”
VDI Ber.
,
85
, pp.
47
52
8.
Haas
,
A.
,
Geiger
,
U.
, and
Maaben
,
F.
,
1994
, “
Oil Aeration in High Speed Combustion Engines
,”
SAE
Paper No. 940792.
9.
van Basshuysen
,
R.
, and
Schäfer
,
F.
,
2012
,
Handbuch Verbrennungsmotor: Grundlagen, Komponenten, Systeme, Perspektiven
, Springer-Verlag, Berlin.
10.
Koch
,
F.
,
Hardt
,
T.
, and
Haubner
,
F.
,
2001
, “
Oil Aeration in Combustion Engines—Analysis and Optimization
,”
SAE
Paper No. 2001-01-1074.
11.
Weimann
,
O.
,
1971
, “
Die Abscheidung von Luftblasen aus Schmierölen durch konstruktive Maßnahmen
,” Ph.D. thesis, Technical University of Darmstadt, Darmstadt, Germany.
12.
Backé
,
E.
, and
Benning
,
P.
,
1962
, “
Über Kavitationserscheinungen in Querschnittsveränderungen von ölhydraulischen Systemen
,”
Ind.-Anz.
,
84
(
63
), pp.
1563
1570
.
13.
Pugh
,
R. J.
,
1996
, “
Foaming, Foam Films, Antifoaming and Defoaming
,”
Adv. Colloid Interface Sci.
,
64
, pp.
67
142
.
14.
Friedlein
,
J.
,
Fritzsche
,
G.
,
Gervé
,
A.
, and
Volz
,
J.
,
1975
, “
Ein radiometrisches Messverfahren zur kontinuierlichen Bestimmung des Luftgehaltes im Motorenöl
,”
MTZ
,
36
(
7/8
), pp. 196–200.
15.
Brehmer
,
G.
,
1966
, “
Luft im Hydrauliksystem—Lufteinschlüsse verursachen Störungen der Gerätefunktionen und Alterung des Öles
,”
VDI-Nachr.
,
29
, pp.
5
6
.
16.
Stuhrmann
,
K.
,
1977
, “
Gestalten von Ölbehältern
,”
Ölhydraulik Pneum: O+P
,
21
(
4
), pp.
284
286
.
17.
Lipphardt
,
P.
,
1974
, “
Untersuchungen über das Lösen und Abscheiden dispergierter Luft in Druckmedien und ihrer Wirkung in hydraulischen Kreisen
,”
VDMA Forschungsh.
,
30
, pp. 1–70.
18.
Leichnitz
,
J.
,
2007
, “
Verschäumtes Hydrauliköl-Verfahren zur Messung des Ölverhaltens
,” Ph.D. thesis, Technical University of Braunschweig, Braunschweig, Germany.
19.
Schindelin
,
J.
,
Arganda-Carreras
,
I.
,
Frise
,
E.
,
Kaynig
,
V.
,
Longair
,
M.
,
Pietzsch
,
T.
,
Preibisch
,
S.
,
Rueden
,
C.
,
Saalfeld
,
S.
,
Schmid
,
B.
,
Tinevez
,
J.-Y.
,
White
,
D. J.
,
Hartenstein
,
V.
,
Eliceiri
,
K.
,
Tomancak
,
P.
, and
Cardona
,
A.
,
2012
, “
Fiji: An Open-Source Platform for Biological-Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
676
682
.
20.
DSI Delta Services Industriels,
2015
, “
DSI Technical Brochure—Air-X: On-Line Lubricant Aeration Measurement on Running Engines
,” DSI Delta Services Industriels, Froyennes, Belgium, accessed July 31, 2017, http://www.deltabeam.net/sites/default/files/pdfs/Brochure%205%20AIR-X%20AIR-X%20COMPACT.compressed.pdf
21.
Díaz
,
R. M.
,
Bernardo
,
M. I.
,
Fernández
,
A. M.
, and
Folgueras
,
M. B.
,
1996
, “
Prediction of the Viscosity of Lubricating Oil Blends at any Temperature
,”
Fuel
,
75
(
5
), pp.
574
578
.
22.
Kollmann
,
K.
, and
Carl
,
Th.
,
1958
, “
Das Verschäumungsverhalten von Schmierölen in schnelllaufenden Verbrennungskraftmaschinen
,”
Konstruktion
,
10
(
5
), pp.
192
197
.
23.
Suzuki
,
R.
,
Tanaka
,
Y.
,
Arai
,
K.
, and
Yokota
,
S.
,
1998
, “
Bubble Elimination in Oil for Fluid Power Systems
,”
SAE
Paper No. 982037.
24.
Riedel
,
H. P.
,
1970
, “
Kavitationserscheinungen an Strömungswiderständen in ölhydraulischen Systemen
,”
Tech. Mitt.
,
63
(
9
), pp.
450
456
.
25.
Findeisen
,
D.
, and
Helduser
,
S.
,
2015
,
Ölhydraulik
,
Springer
,
Berlin
.
26.
Murrenhoff
,
H.
,
2012
,
Grundlagen der Fluidtechnik, Teil 1: Hydraulik
,
Shaker Verlag
,
Aachen, Germany
.
You do not currently have access to this content.