Hydrodynamic cavitation that occurs inside valves not only increases the energy consumption burden of the whole piping system but also leads to severe damages to the valve body and the piping system with a large economic loss. In this paper, in order to reduce the hydrodynamic cavitation inside globe valves, effects of valve body geometrical parameters including bending radius, deviation distance, and arc curvature linked to in/export parts on hydrodynamic cavitation are investigated by using a cavitation model. To begin with, the numerical model is compared with similar works to check its accuracy. Then, the cavitation index and the total vapor volume are predicted. The results show that vapor primarily appears around the valve seat and connecting downstream pipes. The hydrodynamic cavitation does not occur under a small inlet velocity, a large bending radius, and a large deviation distance. Cavitation intensity decreases with the increase of the bending radius, the deviation distance, and the arc curvature linked to in/export parts. This indicates that valve geometrical parameters should be chosen as large as possible, while the maximal fluid velocity should be limited. This work is of significance for hydrodynamic cavitation or globe valve design.

References

References
1.
Hutli
,
E.
,
Nedeljkovic
,
M. S.
,
Radovic
,
N. A.
, and
Bonyár
,
A.
,
2016
, “
The Relation Between the High Speed Submerged Cavitating Jet Behaviour and the Cavitation Erosion Process
,”
Int. J. Multiph. Flow
,
83
, pp.
27
38
.
2.
Yasui
,
K.
,
2016
, “
Unsolved Problems in Acoustic Cavitation
,”
Handbook of Ultrasonics Sonochemistry
, Springer, Singapore, pp.
259
292
.
3.
Long
,
X.
,
Zhang
,
J.
,
Wang
,
J.
,
Xu
,
M.
,
Lyu
,
Q.
, and
Ji
,
B.
,
2017
, “
Experimental Investigation of the Global Cavitation Dynamic Behavior in a Venturi Tube With Special Emphasis on the Cavity Length Variation
,”
Int. J. Multiph. Flow
,
89
, pp.
290
298
.
4.
Liu
,
H.
,
Cao
,
S.
, and
Luo
,
X.
,
2015
, “
Study on the Effect of Inlet Fluctuation on Cavitation in a Cone Flow Channel
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051301
.
5.
Kim
,
J.
, and
Song
,
S. J.
,
2016
, “
Measurement of Temperature Effects on Cavitation in a Turbopump Inducer
,”
ASME J. Fluids Eng.
,
138
(
1
), p.
011304
.
6.
Xiao
,
L.
, and
Long
,
X.
,
2015
, “
Cavitating Flow in Annular Jet Pumps
,”
Int. J. Multiph. Flow
,
71
, pp.
116
132
.
7.
Zhang
,
D.
,
Shi
,
W.
,
Pan
,
D.
, and
Dubuisson
,
M.
,
2015
, “
Numerical and Experimental Investigation of Tip Leakage Vortex Cavitation Patterns and Mechanisms in an Axial Flow Pump
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121103
.
8.
Zhu
,
B.
, and
Hongxun
,
C.
,
2016
, “
Analysis of the Staggered and Fixed Cavitation Phenomenon Observed in Centrifugal Pumps Employing a Gap Drainage Impeller
,”
ASME J. Fluids Eng.
,
139
(
3
), p.
031301
.
9.
Shen
,
Y.
,
Yasui
,
K.
,
Sun
,
Z.
,
Mei
,
B.
,
You
,
M.
, and
Zhu
,
T.
,
2016
, “
Study on the Spatial Distribution of the Liquid Temperature Near a Cavitation Bubble Wall
,”
Ultrason. Sonochem.
,
29
, pp.
394
400
.
10.
Saito
,
S.
,
Shibata
,
M.
,
Fukae
,
H.
, and
Outa
,
E.
,
2007
, “
Computational Cavitation Flows at Inception and Light Stages on an Axial-Flow Pump Blade and in a Cage-Guided Control Valve
,”
J. Therm. Sci.
,
16
(
4
), pp.
337
345
.
11.
Park
,
S. H.
,
2009
, “
Design and Performance Characteristic Analysis of Servo Valve-Type Water Hydraulic Poppet Valve
,”
J. Mech. Sci. Technol.
,
23
(
9
), pp.
2468
2478
.
12.
Valdés
,
J. R.
,
Rodríguez
,
J. M.
,
Monge
,
R.
,
Peña
,
J. C.
, and
Pütz
,
T.
,
2014
, “
Numerical Simulation and Experimental Validation of the Cavitating Flow Through a Ball Check Valve
,”
Energy Convers. Manage.
,
78
, pp.
776
786
.
13.
Qian
,
J. Y.
,
Wei
,
L.
,
Jin
,
Z. J.
,
Wang
,
J. K.
, and
Zhang
,
H.
,
2014
, “
CFD Analysis on the Dynamic Flow Characteristics of the Pilot-Control Globe Valve
,”
Energy Convers. Manage.
,
87
, pp.
220
226
.
14.
Qian
,
J. Y.
,
Liu
,
B. Z.
,
Jin
,
Z. J.
,
Wang
,
J. K.
, and
Zhang
,
H.
,
2016
, “
Numerical Analysis of Flow and Cavitation Characteristics in a Pilot-Control Globe Valve With Different Valve Core Displacements
,”
J. Zhejiang Univ. Sci. A
,
17
(
1
), pp.
54
64
.
15.
Adamkowski
,
A.
, and
Lewandowski
,
M.
,
2014
, “
Cavitation Characteristics of Shutoff Valves in Numerical Modeling of Transients in Pipelines With Column Separation
,”
J. Hydraul. Eng.
,
141
(
2
), p.
04014077
.
16.
Pinho
,
J.
,
Lema
,
M.
,
Rambaud
,
P.
, and
Steelant
,
J.
,
2013
, “
Multiphase Investigation of Water Hammer Phenomenon Using the Full Cavitation Model
,”
J. Propul. Power
,
30
(
1
), pp.
105
113
.
17.
Amirante
,
R.
,
Distaso
,
E.
, and
Tamburrano
,
P.
,
2014
, “
Experimental and Numerical Analysis of Cavitation in Hydraulic Proportional Directional Valves
,”
Energy Convers. Manage.
,
87
, pp.
208
219
.
18.
Yi
,
D.
,
Lu
,
L.
,
Zou
,
J.
, and
Fu
,
X.
,
2015
, “
Interactions Between Poppet Vibration and Cavitation in Relief Valve
,”
Proc. Inst. Mech. Eng.
,
229
(
8
), pp.
1447
1461
.
19.
Kumagai
,
K.
,
Ryu
,
S.
,
Ota
,
M.
, and
Maeno
,
K.
,
2016
, “
Investigation of Poppet Valve Vibration With Cavitation
,”
Int. J. Fluid Power
,
17
(
1
), pp.
15
24
.
20.
Tabrizi
,
A. S.
,
Asadi
,
M.
,
Xie
,
G.
,
Lorenzini
,
G.
, and
Biserni
,
C.
,
2014
, “
Computational Fluid-Dynamics-Based Analysis of a Ball Valve Performance in the Presence of Cavitation
,”
J. Eng. Thermophys.
,
23
(
1
), pp.
27
38
.
21.
Palau-Salvador
,
G.
,
GonzĂĄlez-Altozano
,
P.
, and
Arviza-Valverde
,
J.
,
2008
, “
Three-Dimensional Modeling and Geometrical Influence on the Hydraulic Performance of a Control Valve
,”
ASME J. Fluids Eng.
,
130
(
1
), p.
011102
.
22.
Lee
,
M. G.
,
Lim
,
C. S.
, and
Han
,
S. H.
,
2016
, “
Shape Design of the Bottom Plug Used in a 3-Way Reversing Valve to Minimize the Cavitation Effect
,”
Int. J. Precis. Eng. Manuf.
,
17
(
3
), pp.
401
406
.
23.
Ko
,
S.
, and
Song
,
S.
,
2015
, “
Effects of Design Parameters on Cavitation in a Solenoid Valve for an Electric Vehicle Braking System and Design Optimization
,”
J. Mech. Sci. Technol.
,
29
(
11
), pp.
4757
4765
.
24.
Gholami
,
H.
,
Yaghoubi
,
H.
, and
Alizadeh
,
M.
,
2014
, “
Numerical Analysis of Cavitation Phenomenon in a Vaned Ring-Type Needle Valve
,”
ASCE J. Energy Eng.
,
141
(
4
), p.
04014053
.
25.
Zhou
,
T.
,
Liu
,
T.
,
Deng
,
Y.
,
Chen
,
L.
,
Qian
,
S.
, and
Liu
,
Z.
,
2017
, “
Design of Microfluidic Channel Networks With Specified Output Flow Rates Using the CFD-Based Optimization Method
,” International Conference of Microfluidics, Nanofluidics, and Lab-on-a-Chip, Dalian, China, June 10–12, Paper No.
11
.
26.
Zhou
,
T.
,
Xu
,
Y.
,
Liu
,
Z.
, and
Joo
,
S. W.
,
2015
, “
An Enhanced One-Layer Passive Microfluidic Mixer With an Optimized Lateral Structure With the Dean Effect
,”
ASME J. Fluids Eng.
,
137
(
9
), p.
091102
.
27.
Chern
,
M. J.
,
Hsu
,
P. H.
,
Cheng
,
Y. J.
,
Tseng
,
P. Y.
, and
Hu
,
C. M.
,
2012
, “
Numerical Study on Cavitation Occurrence in Globe Valve
,”
ASCE J. Energy Eng.
,
139
(
1
), pp.
25
34
.
28.
Li
,
S.
,
Aung
,
N. Z.
,
Zhang
,
S.
,
Cao
,
J.
, and
Xue
,
X.
,
2013
, “
Experimental and Numerical Investigation of Cavitation Phenomenon in Flapper–Nozzle Pilot Stage of an Electrohydraulic Servo-Valve
,”
Comput. Fluids
,
88
, pp.
590
598
.
29.
Aung
,
N. Z.
, and
Li
,
S.
,
2014
, “
A Numerical Study of Cavitation Phenomenon in a Flapper-Nozzle Pilot Stage of an Electrohydraulic Servo-Valve With an Innovative Flapper Shape
,”
Energy Convers. Manage.
,
77
, pp.
31
39
.
30.
Yang
,
Q.
,
Aung
,
N. Z.
, and
Li
,
S.
,
2015
, “
Confirmation on the Effectiveness of Rectangle-Shaped Flapper in Reducing Cavitation in Flapper–Nozzle Pilot Valve
,”
Energy Convers. Manage.
,
98
, pp.
184
198
.
31.
Li
,
B.
,
Li
,
W.
,
Jiao
,
M.
,
Wang
,
B.
, and
Liu
,
X.
,
2016
, “
Analysis of Cavitation Characteristics in Throttle Valve With Different Structure Parameters
,”
J. Mech. Med. Biol.
,
17
(
3
), p.
1750047
.
32.
Wang
,
C.
,
Li
,
G. X.
,
Sun
,
Z. Y.
,
Wang
,
L.
,
Sun
,
S. P.
,
Gu
,
J. J.
, and
Wu
,
X. J.
,
2016
, “
Effects of Structure Parameters on Flow and Cavitation Characteristics Within Control Valve of Fuel Injector for Modern Diesel Engine
,”
Energy Convers. Manage.
,
124
, pp.
104
115
.
33.
Zou
,
J.
,
Fu
,
X.
,
Du
,
X. W.
,
Ruan
,
X. D.
,
Ji
,
H.
,
Ryu
,
S.
, and
Ochiai
,
M.
,
2008
, “
Cavitation in a Non-Circular Opening Spool Valve With U-Grooves
,”
Proc. Inst. Mech. Eng. Part A
,
222
(
4
), pp.
413
420
.
34.
Gao
,
H.
,
Lin
,
W.
, and
Tsukiji
,
T.
,
2006
, “
Investigation of Cavitation Near the Orifice of Hydraulic Valves
,”
Proc. Inst. Mech. Eng. Part G
,
220
(
4
), pp.
253
265
.
35.
Nie
,
S.
,
Huang
,
G.
,
Li
,
Y.
,
Yang
,
Y.
, and
Zhu
,
Y.
,
2006
, “
Research on Low Cavitation in Water Hydraulic Two-Stage Throttle Poppet Valve
,”
Proc. Inst. Mech. Eng. Part E
,
220
(
3
), pp.
167
179
.
36.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
ICMF International Conference on Multiphase Flow
, Firenze, Italy, May 22–27, Paper No. 152.
37.
Stern
,
F.
,
Wilson
,
R. V.
,
Coleman
,
H. W.
, and
Paterson
,
E. G.
,
2001
, “
Comprehensive Approach to Verification and Validation of CFD Simulations-Part 1: Methodology and Procedures
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
793
802
.
38.
Colombo
,
E.
,
Inzoli
,
F.
, and
Mereu
,
R.
,
2012
, “
A Methodology for Qualifying Industrial CFD: The Q3 Approach and the Role of a Protocol
,”
Comput. Fluids
,
54
, pp.
56
66
.
39.
Nastase
,
E. V.
,
2016
, “
Determination of Local Losses in a Globe Valve at Different Openings
,”
Acta Technica Corviniensis-Bull. Eng.
,
9
(
3
), pp.
47
50
.https://search.proquest.com/openview/374aa7731677d17f7f71da1c96704207/1?pq-origsite=gscholar&cbl=616471
You do not currently have access to this content.