In this paper, a theoretical study of ball valves is carried out for investigating the local resistance and pressure drop of ball valves in operating process. An equivalent model of ball valves is proposed based on the inherent mechanism of the resistance loss, which can be divided into three equivalent throttling components: a thick orifice, two variable-opening eccentric orifice plates, and a Z type elbow. Through analysis of the flow resistance of the three components, a general parametric modeling of ball valves is presented for the flow resistance analysis, and then an analytical formula of pressure drop is demonstrated. The results obtained from the presented model are compared with the prior test data to validate this model, and good agreement is observed. Indicate that the presented model has high accuracy in predicting the resistance and pressure loss in various openings. The results show that the influences of thin orifice plates play an important role in the total flow resistance coefficient and pressure drop, especially in the small opening. The effects of thick orifice plates and the Z type elbow gradually increased as the valve opening rises and becomes significant when the opening is more than 70%.

References

References
1.
Valdes
,
J. R.
,
Rodriguez
,
J. M.
,
Monge
,
R.
,
Pena
,
J. C.
, and
Putz
,
T.
,
2014
, “
Numerical Simulation and Experimental Validation of the Cavitating Flow Through a Ball Check Valve
,”
Energy Convers. Manage.
,
78
, pp.
776
786
.
2.
Bagherifard
,
S.
,
Fernández Pariente
,
I.
, and
Guagliano
,
M.
,
2013
, “
Failure Analysis of a Large Ball Valve for Pipe-Lines
,”
Eng. Failure Anal.
,
32
(
3
), pp.
167
177
.
3.
Lorenzini
,
G.
, and
Biserni
,
C.
,
2003
, “
A Vapotron Effect Application for Electronic Equipment Cooling
,”
ASME J. Electron. Packag.
,
125
(
4
), pp.
475
479
.
4.
Moujaes
,
S. F.
, and
Jagan
,
R.
,
2008
, “
3D CFD Predictions and Experimental Comparisons of Pressure Drop in a Ball Valve at Different Partial Openings in Turbulent Flow
,”
ASCE J. Energy Eng.
,
134
(
1
), pp.
24
28
.
5.
Chern
,
M.
, and
Wang
,
C.
,
2004
, “
Control of Volumetric Flow-Rate of Ball Valve Using V-Port
,”
ASME J. Fluids Eng.
,
126
(
3
), pp.
471
481
.
6.
Lee
,
J.
, and
Lee
,
K.
,
2010
, “
Prediction of the Resistance Coefficient in a Segment Ball Valve
,”
J. Mech. Sci. Technol.
,
24
(
1
), pp.
185
188
.
7.
van Lookeren Campagne
,
C.
,
Nicodemus
,
R.
,
de Bruin
,
G. J.
, and
Lohse
,
D.
,
2002
, “
A Method for Pressure Calculation in Ball Valves Containing Bubbles
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
765
771
.
8.
Chern
,
M.
,
Tseng
,
P.
,
Hsu
,
P.
,
Cheng
,
Y.
, and
Hu
,
C.
,
2013
, “
Numerical Study on Cavitation Occurrence in Globe Valve
,”
ASCE J. Energy Eng.
,
139
(
1
), pp.
25
34
.
9.
Tabrizi
,
A.
,
Asadi
,
M.
,
Xie
,
G.
,
Lorenzini
,
G.
, and
Biserni
,
C.
,
2014
, “
Computational Fluid-Dynamics-Based Analysis of a Ball Valve Performance in the Presence of Cavitation
,”
J. Eng. Thermophys.
,
23
(
1
), pp.
27
38
.
10.
Davis
,
J. A.
, and
Stewart
,
M.
,
2002
, “
Predicting Globe Control Valve Performance—Part I: CFD Modeling
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
772
777
.
11.
Davis
,
J. A.
, and
Stewart
,
M.
,
2002
, “
Predicting Globe Control Valve Performance—Part II: Experimental Verification
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
778
783
.
12.
Tordal
,
S.
,
Klausen
,
A.
, and
Bak
,
M.
,
2015
, “
Experimental System Identification and Black Box Modeling of Hydraulic Directional Control Valve
,”
Model. Identif. Control
,
36
(
4
), pp.
225
235
.
13.
Witters
,
M.
, and
Swevers
,
J.
,
2010
, “
Black-Box Model Identification for a Continuously Variable, Electro-Hydraulic Semi-Active Damper
,”
Mech. Syst. Signal Process.
,
24
(
1
), pp.
4
18
.
14.
Casoli
,
P.
, and
Anthony
,
A.
,
2013
, “
Gray Box Modeling of an Excavator's Variable Displacement Hydraulic Pump for Fast Simulation of Excavation Cycles
,”
Control Eng. Pract.
,
21
(
4
), pp.
483
494
.
15.
Fang
,
L.
,
Tang
,
L.
,
Wang
,
J.
, and
Shang
,
Q.
,
2016
, “
A Semi-Physical Model for Pneumatic Control Valves
,”
Nonlinear Dyn.
,
85
(
3
), pp.
1735
1748
.
16.
He
,
Q.
, and
Wang
,
J.
,
2014
, “
Valve Stiction Quantification Method Based on a Semiphysical Valve Stiction Model
,”
Ind. Eng. Chem. Res.
,
53
(
30
), pp.
12010
12022
.
17.
Mahrenholz
,
J.
, and
Lumkes
,
J.
,
2010
, “
Analytical Coupled Modeling and Model Validation of Hydraulic On/Off Valves
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
1
), pp.
91
93
.
18.
Xu
,
B.
,
Ding
,
R.
,
Zhang
,
J.
, and
Su
,
Q.
,
2014
, “
Modeling and Dynamic Characteristics Analysis on a Three-Stage Fast-Response and Large-Flow Directional Valve
,”
Energy Convers. Manage.
,
79
, pp.
187
199
.
19.
Valdés
,
J.
,
Rodriguez
,
J.
,
Saumell
,
J.
, and
Putz
,
T.
,
2014
, “
A Methodology for the Parametric Modelling of the Flow Coefficients and Flow Rate in Hydraulic Valves
,”
Energy Convers. Manage.
,
88
, pp.
598
611
.
20.
Chisholm
,
D.
,
1983
,
Two-Phase Flow in Pipelines and Heat Exchangers
,
Longman Higher Education
,
London
.
21.
Roul
,
M. K.
, and
Dash
,
S. K.
,
2011
, “
Two-Phase Pressure Drop Caused by Sudden Flow Area Contraction/Expansion in Small Circular Pipes
,”
Int. J. Numer. Methods Fluids
,
66
(
11
), pp.
1420
1446
.
22.
Wang
,
C.
,
Tseng
,
C.
, and
Chen
,
I. Y.
,
2010
, “
A New Correlation and the Review of Two-Phase Flow Pressure Change Across Sudden Expansion in Small Channels
,”
Int. J. Heat Mass Transfer
,
53
(
19
), pp.
4287
4295
.
23.
Chen
,
I.
,
Wongwises
,
S.
,
Yang
,
B.
, and
Wang
,
C.
,
2010
, “
Two-Phase Flow Across Small Sudden Expansions and Contractions
,”
Heat Transfer Eng.
,
31
(
4
), pp.
298
309
.
24.
Liou
,
T.
, and
Lin
,
C.
,
2014
, “
Study on Microchannel Flows With a Sudden Contraction-Expansion at a Wide Range of Knudsen Number Using Lattice Boltzmann Method
,”
Microfluid. Nanofluid.
,
16
(
1
), pp.
315
327
.
25.
Idel'chik
,
I. E.
,
Malyavskayafs
,
G. R.
,
Martynenko
,
O. G.
, and
Fried
,
E.
,
1994
,
Handbook of Hydraulic Resistance
,
3rd ed.
,
CRC Press
,
Boca Raton, FL
.
26.
Simpson
,
H. C.
,
Rooney
,
D. H.
, and
Grattan
,
E.
,
1983
, “
Two-Phase Flow Through Gate Valves and Orifice Plates
,”
International Conference on Physical Modelling of Multi-Phase Flow
, Coventry, UK, Apr., pp. 25–40.http://adsabs.harvard.edu/abs/1981STIN...8223508G
27.
Kojasoy
,
G.
,
Landis
,
F.
,
Kwame-Mensah
,
P.
, and
Chang
,
C. T.
,
1997
, “
Two-Phase Pressure Drop in Multiple Thick- and Thin-Orifice Plates
,”
Exp. Therm. Fluid Sci.
,
15
(
4
), pp.
347
358
.
28.
Fossa
,
M.
, and
Guglielmini
,
G.
,
2002
, “
Pressure Drop and Void Fraction Profiles During Horizontal Flow Through Thin and Thick Orifices
,”
Exp. Therm. Fluid Sci.
,
26
(
5
), pp.
513
523
.
29.
Fossa
,
M.
,
Guglielmini
,
G.
, and
Marchitto
,
A.
,
2006
, “
Two-Phase Flow Structure Close to Orifice Contractions During Horizontal Intermittent Flows
,”
Int. Commun. Heat Mass Transfer
,
33
(
6
), pp.
698
708
.
30.
Spedding
,
P. L.
,
Benard
,
E.
, and
McNally
,
G. M.
,
2004
, “
Fluid Flow Through 90 Degree Bends
,”
Asia-Pac. J. Chem. Eng.
,
12
(
1–2
), pp.
107
128
.
31.
Naphon
,
P.
, and
Wongwises
,
S.
,
2006
, “
A Review of Flow and Heat Transfer Characteristics in Curved Tubes
,”
Renewable Sustainable Energy Rev.
,
10
(
5
), pp.
463
490
.
32.
Crawford
,
N.
,
Spence
,
S.
,
Simpson
,
A.
, and
Cunningham
,
G.
,
2009
, “
A Numerical Investigation of the Flow Structures and Losses for Turbulent Flow in 90° Elbow Bends
,”
Proc. Inst. Mech. Eng., Part E
,
223
(
1
), pp.
27
44
.
33.
Crawford
,
N. M.
,
Cunningham
,
G.
, and
Spence
,
S. W. T.
,
2007
, “
An Experimental Investigation Into the Pressure Drop for Turbulent Flow in 90° Elbow Bends
,”
Proc. Inst. Mech. Eng., Part E
,
221
(
2
), pp.
77
88
.
34.
Sudo
,
K.
,
Sumida
,
M.
, and
Hibara
,
H.
,
1998
, “
Experimental Investigation on Turbulent Flow in a Circular-Sectioned 90-Degree Bend
,”
Exp. Fluids
,
25
(
1
), pp.
42
49
.
35.
Dutta
,
P.
,
Saha
,
S. K.
,
Nandi
,
N.
, and
Pal
,
N.
,
2016
, “
Numerical Study on Flow Separation in 90° Pipe Bend Under High Reynolds Number by k-ε Modelling
,”
Eng. Sci. Technol. Int. J.
,
10
(
5
), pp.
2221
2226
.
36.
Schlichting
,
H.
,
Gersten
,
K.
, and
Mayes
,
K.
,
2000
,
Boundary-Layer Theory
,
8th ed.
,
Springer
,
Berlin
.
37.
Ai
,
W.
,
Yu
,
Z.
,
Xu
,
T.
, and
Hui
,
S.
,
2000
, “
Performance Experimental Study of the Different Resistance Components for Measuring Pulverized Coal Concentration
,”
Power Eng.
,
20
(
5
), pp.
892
895
.
38.
Cioncolini
,
A.
,
Scenini
,
F.
, and
Duff
,
J.
,
2015
, “
Micro-Orifice Single-Phase Liquid Flow: Pressure Drop Measurements and Prediction
,”
Exp. Therm. Fluid Sci.
,
65
, pp.
33
40
.
39.
Fried
,
E.
, and
Idelchik
,
I. E.
,
1989
,
Flow Resistance: A Design Guide for Engineers
, CRC Press, Boca Raton, FL.
40.
Lyons
,
J. L.
,
1982
,
Lyons' Valve Designer's Handbook
,
Van Nostrand Reinhold
Co.,
New York
.
41.
Kirik
,
M. J.
, and
Driskell
,
L. R.
,
1986
,
Flow Manual for Quarter-Turn Valves
,
Rockwell International
, Pittsburgh, PA.
42.
Cui
,
B.
,
Lin
,
Z.
,
Zhu
,
Z.
,
Wang
,
H.
, and
Ma
,
G.
,
2017
, “
Influence of Opening and Closing Process of Ball Valve on External Performance and Internal Flow Characteristics
,”
Exp. Therm. Fluid Sci.
,
80
, pp.
193
202
.
43.
Shi
,
X.
,
,
H.
,
Zhang
,
K.
,
Zhu
,
D.
,
Sun
,
B.
, and
Cao
,
B.
,
2013
, “
Analysis on Resistance Characteristics and Flow Mechanism of PVC Ball Valve
,”
Trans. Chin. Soc. Agric. Eng.
,
29
(
4
), pp.
95
101
.
44.
Chern
,
M.
,
Wang
,
C.
, and
Ma
,
C.
,
2007
, “
Performance Test and Flow Visualization of Ball Valve
,”
Exp. Therm. Fluid Sci.
,
31
(
6
), pp.
502
512
.
You do not currently have access to this content.