Large eddy simulations are carried out to predict the flow noise produced in the solenoid valve of an antilock braking system (ABS) using Lighthill’s acoustic analogy and the Ffowcs Williams and Hawkings (FW–H) surface integral method. The fluid inside the valve is assumed to be incompressible at a fixed temperature. The solenoid valve operation is realized by applying an overset grid methodology to the moving plunger, and the plunger has a linear motion in the axial direction. Several types of solenoid valves are numerically designed to maximally reduce the flow noise. The upstream flow is detached through a small opening between the plunger and the seat, which generates pressure fluctuation around the narrow gap, which is subject to high wall pressure fluctuations and shear stresses. Large eddy simulations are performed by varying the position of the flow separation. An optimal design of the valve is obtained, featuring a small radius of surface curvature, a smooth surface, and a large plunger tip area angle. Measurements are obtained from the optimal design to validate the design in a real vehicle performance test, and the predicted pressure frequency in the solenoid valve agreed well with the experimental results.

References

References
1.
Reethoff
,
G.
,
1978
, “
Turbulence-Generated Noise in Pipe Flow
,”
Ann. Rev. Fluid Mech.
,
10
, pp.
333
367
.
2.
Lighthill
,
M. J.
,
1952
, “
On Sound Generated Aerodynamically I. General Theory
,”
Proc. R. Soc. A
,
211
(1107), pp.
564
587
.
3.
Curle
,
N.
,
1955
, “
The Influence of Solid Boundaries Upon Aerodynamic Sound
,”
Proc. R. Soc. A
,
231
(1187), pp.
505
514
.
4.
Ffowcs Williams
,
J. E.
, and
Hawkings
,
D. L.
,
1969
, “
Sound Generation by Turbulence and Surfaces in Arbitrary Motion
,”
Philos. Trans. R. Soc. Lond. Ser. A
,
264
(
1151
), pp.
321
342
.
5.
Nakano
,
M.
,
Outa
,
E.
, and
Tajima
,
K.
,
1988
, “
Noise and Vibration Related to the Patterns of Supersonic Annular Flow in a Pressure Reducing Gas Valve
,”
ASME J. Fluids Eng.
,
110
(
1
), pp.
55
61
.
6.
Amini
,
A.
, and
Owen
,
I.
,
1995
, “
A Practical Solution to the Problem of Noise and Vibration in a Pressure-Reducing Valve
,”
Exp. Therm. Fluid Sci.
,
10
(1), pp.
136
141
.
7.
Kim
,
J. N.
, and
Sung
,
H. J.
,
2006
, “
Wall Pressure Fluctuations and Flow-Induced Noise in a Turbulent Boundary Layer Over a Bump
,”
J. Fluid Mech.
,
558
, pp.
79
102
.
8.
Ji
,
M.
, and
Wang
,
M.
,
2010
, “
Sound Generation by Turbulent Boundary-Layer Flow Over Small Steps
,”
J. Fluid Mech.
,
654
, pp.
161
193
.
9.
Hao
,
J.
,
Wang
,
M.
,
Ji
,
M.
, and
Wang
,
K.
,
2013
, “
Flow Noise Induced by Small Gaps in Low-Mach-Number Turbulent Boundary Layers
,”
Phys. Fluids
,
25
(
11
), p.
110821
.
10.
Addad
,
Y.
,
Laurence
,
D.
,
Talotte
,
C.
, and
Jacob
,
M. C.
,
2003
, “
Large Eddy Simulation of a Forward-Backward Facing Step for Acoustic Source Identification
,”
Int. J. Heat Fluid Flow
,
24
(4), pp.
562
571
.
11.
Kato
,
C.
,
Kaiho
,
M.
, and
Manabe
,
A.
,
2003
, “
An Overset Finite-Element Large-Eddy Simulation Method With Applications to Turbomachinery and Aeroacoustics
,”
ASME J. Appl. Mech.
,
70
(
1
), pp.
32
43
.
12.
Morita
,
R.
,
Inada
,
F.
,
Mori
,
M.
,
Tezuka
,
K.
, and
Tsujimoto
,
Y.
,
2007
, “
CFD Simulations and Experiments of Flow Fluctuations Around a Steam Control Valve
,”
ASME J. Fluids Eng.
,
129
(
1
), pp.
48
54
.
13.
Brentner
,
K. S.
, and
Farassat
,
F.
,
1998
, “
Analytical Comparison of the Acoustic Analogy and Kirchhoff Formulation for Moving Surfaces
,”
AIAA J.
,
36
(
8
), pp.
1379
1386
.
14.
Ask
,
J.
, and
Davidson
,
L.
,
2009
, “
A Numerical Investigation of the Flow Past a Generic Side Mirror and Its Impact on Sound Generation
,”
ASME J. Fluids Eng.
,
131
(
6
), p.
061102
.
15.
Ask
,
J.
, and
Davidson
,
L.
,
2010
, “
Flow and Dipole Source Evaluation of a Generic SUV
,”
ASME J. Fluids Eng.
,
132
(
5
), p.
051111
.
16.
Lee
,
G. S.
,
Sung
,
H. J.
, and
Kim
,
H. C.
,
2012
, “
Multiphysics Analysis of a Linear Control Solenoid Valve
,”
ASME J. Fluids Eng.
,
135
(
1
), p.
011104
.
17.
Emma
,
F.
,
Adolfo
,
S.
,
Dario
,
B.
, and
Kim
,
A. S.
,
2016
, “
A Modeling Approach to Study the Fluid Dynamic Forces Acting on the Spool of a Flow Control Valve
,”
ASME J. Fluids Eng.
,
139
(
1
), p.
011103
.
18.
Park
,
T. S.
, and
Sung
,
H. J.
,
1995
, “
A Nonlinear Low-Reynolds-Number k–ε Model for Turbulent Separated and Reattaching Flows—(I): Flow Field Computations
,”
Int. J. Heat Mass Transfer
,
38
(14), pp.
2657
2666
.
19.
Park
,
T. S.
, and
Sung
,
H. J.
,
2001
, “
Development of a Near Wall Turbulence Model and Application to Jet Impingement Heat Transfer
,”
Int. J. Heat Fluid Flow
,
22
(1), pp.
10
18
.
20.
Benek
,
J. A.
,
Buning
,
P. G.
, and
Steger
,
J. L.
,
1985
, “
A 3-D Chimera Grid Embedding Technique
,”
AIAA
Paper No. 85-1523.
21.
Chapman
,
D. R.
,
1979
, “
Computational Aerodynamics Development and Outlook
,”
AIAA J.
,
17
(12), p.
1293
.
22.
Choi
,
H.
, and
Moin
,
P.
,
2012
, “
Grid-Point Requirements for Large Eddy Simulation: Chapman’s Estimates Revisited
,”
Phys. Fluids
,
24
(1), p.
011702
.
23.
Kravcheko
,
A. G.
,
Moin
,
P.
, and
Moster
,
R.
,
1996
, “
Zonal Embedded Grids for Numerical Simulations of Wall-Bounded Turbulent Flows
,”
J. Comp. Phy.
,
127
(2), pp.
412
423
.
24.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy-Viscosity Model
,”
Phys. Fluids
,
3
(
7
), pp.
1760
1765
.
25.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Sub-Grid-Scale Closure Method
,”
Phys. Fluids
,
4
(
3
), pp.
633
635
.
26.
Wang
,
M.
, and
Moin
,
P.
,
2000
, “
Computation of Trailing-Edge Flow and Noise Using Large-Eddy Simulation
,”
AIAA J.
,
38
(
12
), pp.
2201
2209
.
27.
Wang
,
M.
,
Lele
,
S. K.
, and
Moin
,
P.
,
1996
, “
Computation of Quadrupole Noise Using Acoustic Analogy
,”
AIAA J.
,
34
(
11
), pp.
2247
2254
.
You do not currently have access to this content.