This paper presents the simulation of the dynamic behavior of variable speed pump–turbine. A power reduction scenario at constant wicket gate opening was numerically analyzed from 100% to 93% rpm corresponding to a power reduction from full load to about 70% with a ramp rate of 1.5% per second. The flow field analysis led to the onset and development of unsteady phenomena progressively evolving in an organized rotating partial stall during the pump power reduction. These phenomena were characterized by frequency and time–frequency analyses of several numerical signals (pressure, blade torque, and flow rate in blade passages). The unsteady pattern in return channel strengthened emphasizing its characteristic frequency with the rotational velocity decreasing reaching a maximum and then disappearing. At lower rotational speed, the flow field into the wickets gates channel starts to manifest a full three-dimensional (3D) flow structure. This disturbance was related to the boundary layer separation and stall, and it was noticed by a specific frequency.

References

References
1.
SET-Plan Information System (SETIS)
,
2011
, “
Electricity Storage in the Power Sector: Technology Information Sheet
,” JRC European Commission, Luxembourg, The Netherlands, accessed Sept. 30, 2017, https://setis.ec.europa.eu/related-jrc-activities/jrc-setis-reports/electricity-storage-power-sector-technology-information
2.
Arantegui
,
R.
,
Fitzgerald
,
N.
, and
Leahy
,
P.
,
2012
, “
Pumped-Hydro Energy Storage: Potential for Transformation From Single Dams
,” JRC European Commission, Luxembourg, The Netherlands, accessed Sept. 30, 2017, https://setis.ec.europa.eu/sites/default/files/reports/Pumped-hydro-energy-storage-potential-for-transformation-from-single-dams.pdf
3.
European Union, 2009, “
Directive 2009/28/EC of the European Parliament and of the Council on the Promotion of the Use of Energy From Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC
,” European Union, Brussels, Belgium, accessed Sept. 30, 2017, http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009L0028
4.
Grotenburg
,
K.
,
Koch
,
F.
,
Erlich
,
I.
, and
Bachmann
,
U.
,
2001
, “
Modelling and Dynamic Simulation of Variable Speed Pump Storage Unit Incorporated Into the German Electric Power System
,” European Conference on Power Electronics and Applications (
EPE
), Graz, Austria, Aug. 27–29, pp. 1–10.https://www.uni-due.de/ean/downloads/papers/graz_full-paper_2001.pdf
5.
Hodder
,
A.
,
2004
, “
Double-Fed Asynchronous Motor-Generator Equipped With a 3-Level VSI Cascade
,”
Ph.D. thesis
, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.https://infoscience.epfl.ch/record/33414/files/EPFL_TH2939.pdf
6.
Kopf
,
E.
,
Brausewetter
,
S.
,
Giese
,
M.
, and
Moser
,
F.
,
2004
, “
Optimized Control Strategies for Variable Speed Machines
,”
22nd IAHR Symposium on Hydraulic Machinery and Systems
, Stockholm, Sweden, June 29–July 2, pp. 1–9.
7.
Kuwabara
,
T.
,
Shibuya
,
A.
,
Furuta
,
H.
,
Kita
,
E.
, and
Mitsuhashi
,
K.
,
1996
, “
Design and Dynamic Response Characteristics of 400 MW Adjustable Speed Pumped Storage Unit for Ohkawachi Power Station
,”
IEEE Trans. Energy Convers.
,
11
(
2
), pp.
376
384
.
8.
Schwery
,
A.
,
Fass
,
E.
,
Henry
,
J.-M.
,
Bach
,
W.
, and
Mirzaian
,
A.
,
2005
, “
Pump Storage Power Plants, ALSTOM's Long Experience and Technological Innovation
,” HYDRO, Villach, Austria, Oct. 17–20, pp. 1–10.
9.
Simond
,
J. J.
,
Sapin
,
A.
, and
Schafer
,
D.
,
1999
, “
Expected Benefits of Adjustable Speed Pumped Storage in the European Network
,”
Hydropower into the Next Century
, Gmunden, Austria, pp.
579
585
.https://infoscience.epfl.ch/record/134070/files/eboaspsiten.pdf
10.
Henry
,
J. M.
,
Houdeline
,
J. B.
,
Ruiz
,
S.
, and
Kunz
,
T.
,
2012
, “
How Reversible Pump-Turbines Can Support Grid Variability—The Variable Speed Approach
,”
HYDRO Innovative Approaches to Global Challenges
, Bilbao, Spain, Oct. 29–31, pp. 1–10.
11.
Sun
,
Y.
,
Zuo
,
Z.
,
Liu
,
S.
,
Liu
,
J.
, and
Wu
,
Y.
,
2014
, “
Distribution of Pressure Fluctuations in a Prototype Pump Turbine at Pump Mode
,”
Adv. Mech. Eng.
,
2014
, p.
923937
.
12.
Sun
,
H.
,
Xiao
,
R.
,
Liu
,
W.
, and
Wang
,
F.
,
2013
, “
Analysis of S Characteristics and Pressure Pulsations in a Pump-Turbine With Misaligned Guide Vanes
,”
ASME J. Fluids Eng.
,
135
(
5
), p.
051101
.
13.
Li
,
W.
,
Pan
,
Z.
, and
Shi
,
W.
,
2012
, “
Numerical Investigation of Pump-Turbines With Different Blades at Pump Conditions
,”
J. Adv. Manuf. Syst.
,
11
(
2
), pp.
143
153
.
14.
Rodriguez
,
C. G.
,
Mateos-Prieto
,
B.
, and
Egusquiza
,
E.
,
2014
, “
Monitoring of Rotor-Stator Interaction in Pump-Turbine Using Vibrations Measured With On-Board Sensors Rotating With Shaft
,”
Shock Vib.
,
2014
, p.
276796
.
15.
Gentner
,
C.
,
Sallaberger
,
M.
,
Widmer
,
C.
,
Barun
,
O.
, and
Staubli
,
T.
,
2012
, “
Analysis of Unstable Operation of Pump Turbines and How to Avoid It
,”
HYDRO Innovative Approaches to Global Challenges
, Bilbao, Spain, Oct. 29–31, pp. 1–10.
16.
Pavesi
,
G.
,
Cavazzini
,
G.
, and
Ardizzon
,
G.
,
2008
, “
Time–Frequency Characterization of the Unsteady Phenomena in a Centrifugal Pump
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1527
1540
.
17.
Pavesi
,
G.
,
Cavazzini
,
G.
, and
Ardizzon
,
G.
,
2008
, “
Time-Frequency Characterization of Rotating Instabilities in a Centrifugal Pump With a Vaned Diffuser
,”
Int. J. Rotating Mach.
,
2008
, p.
202179
.
18.
Cavazzini
,
G.
,
Pavesi
,
G.
,
Ardizzon
,
G.
,
Dupont
,
P.
,
Coudert
,
S.
,
Caignaert
,
G.
, and
Bois
,
G.
,
2009
, “
Analysis of the Rotor-Stator Interaction in a Radial Flow Pump
,”
La Houille Blanche, Rev. Int. de l'eau
,
5
, pp.
141
151
.
19.
Yang
,
J.
,
Pavesi
,
G.
,
Cavazzini
,
G.
, and
Yuan
,
S.
,
2013
, “
Numerical Characterization of Pressure Instabilities in a Vaned Centrifugal Pump Under Part Load Condition
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
52
(
2
), p.
022044
.
20.
Yang
,
J.
,
Pavesi
,
G.
,
Yuan
,
S.
,
Cavazzini
,
G.
, and
Ardizzon
,
G.
,
2015
, “
Experimental Characterization of a Pump-Turbine in Pump Mode at Hump Instability Region
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051109
.
21.
Deyou
,
L.
,
Hongjie
,
W.
,
Gaoming
,
X.
,
Ruzhi
,
G.
,
Xianzhu
,
W.
, and
Zhansheng
,
L.
,
2015
, “
Unsteady Simulation and Analysis for Hump Characteristics of a Pump Turbine Model
,”
Renewable Energy
,
77
, pp.
32
42
.
22.
Gentner
,
C.
,
Sallaberger
,
M.
,
Widmer
,
C.
,
Braun
,
O.
, and
Staubli
,
T.
,
2012
, “
Numerical and Experimental Analysis of Instability Phenomena in Pump Turbines
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
15
(
3
), p.
032042
.
23.
Cavazzini
,
G.
,
Pavesi
,
G.
, and
Ardizzon
,
G.
,
2011
, “
Pressure Instabilities in a Vaned Centrifugal Pump
,”
Proc. Inst. Mech. Eng., Part A
,
225
(
7
), pp.
930
939
.
24.
Pavesi
,
G.
,
Cavazzini
,
G.
,
Yang
,
J.
, and
Ardizzon
,
G.
,
2014
, “
Flow Phenomena Related to the Unstable Energy-Discharge Characteristic of a Pump-Turbine in Pump Mode
,”
15th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
(
ISROMAC
), Honolulu, HI, Feb. 24–28, pp. 1–8.https://www.researchgate.net/publication/288996574_Flow_phenomena_related_to_the_unstable_energy-discharge_characteristic_of_a_pump-turbine_in_pump_mode
25.
Pavesi
,
G.
,
Yang
,
J.
,
Cavazzini
,
G.
, and
Ardizzon
,
G.
,
2015
, “
Experimental Analysis of Instability Phenomena in a High-Head Reversible Pump-Turbine at Large Partial Flow Condition
,”
11th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
(
ETC
), Madrid, Spain, Mar. 23–27, pp. 1–13.http://www.academia.edu/17566028/Experimental_Analysis_of_Instability_Phenomena_in_a_High-Head_Reversible_Pump-Turbine_at_Large_Partial_Flow_Condition
You do not currently have access to this content.