Unsteady flow phenomena like rotating stall frequently occur in centrifugal pumps under off-design conditions. Rotating stall could lead to flow instabilities and pressure pulsation, which affect the normal operation of pumps. The mechanism of rotating stall has not been sufficiently understood in previous researches. In this study, the impact of rotating stall in the impeller on centrifugal pump stability and pressure pulsation is numerically investigated. This paper aims to detect the unsteady flow characteristics inside the centrifugal pump by computational fluid dynamics technology, to analyze pressure pulsations caused by rotating stall and to explore the propagation mechanism of rotating stall. Unsteady numerical simulations are performed by ANSYS 16.0 to model the unsteady flow within the entire flow passage of a centrifugal pump under 0.4QBEP and 0.6QBEP working conditions. Through flow characteristics research, the generation and propagation of rotating stall are discovered. Flow separation appears near the leading edge of the pressure side and transforms into vortices, which move along the passage. Meanwhile, the stall cells rotate circumferentially in the impeller. Additionally, frequencies and amplitudes of pressure pulsations related to rotating stall are investigated by spectrum analysis. The results detect a possible characteristic frequency of rotating stall and show that the interaction between stall cells and the volute tongue could have an influence on rotor–stator interaction (RSI).

References

References
1.
Cao
,
L.
,
Zhang
,
Y. Y.
,
Wang
,
Z. W.
,
Xiao
,
Y. X.
, and
Liu
,
R.
,
2015
, “
Effect of Axial Clearance on the Efficiency of a Shrouded Centrifugal Pump
,”
ASME J. Fluids Eng.
,
137
(
7
), p.
071101
.
2.
Cao
,
L.
,
Xiao
,
Y. X.
,
Wang
,
Z. W.
,
Luo
,
Y. Y.
, and
Zhao
,
X. R.
,
2017
, “
Pressure Fluctuation Characteristics in the Sidewall Gaps of a Centrifugal Dredging Pump
,”
Eng. Comput.
,
34
(
4
), pp. 1054–1069.
3.
Tan
,
L.
,
Zhu
,
B. S.
,
Cao
,
S. L.
,
Wang
,
Y. C.
, and
Wang
,
B. B.
,
2014
, “
Numerical Simulation of Unsteady Cavitation Flow in a Centrifugal Pump at Off-Design Conditions
,”
Proc. Inst. Mech. Eng., Part C
,
228
(
11
), pp.
1994
2006
.
4.
Zhou
,
L.
,
Shi
,
W. D.
,
Bai
,
L.
,
Lu
,
W. G.
, and
Li
,
W.
,
2013
, “
Numerical Investigation of Pressure Fluctuation and Rotor-Stator Interaction in a Multistage Centrifugal Pump
,”
ASME
Paper No. FEDSM2013-16445.
5.
Emmons
,
H. W.
,
Pearson
,
C. E.
, and
Grant
,
H. P.
,
1955
, “
Compressor Surge and Stall Propagation
,”
Trans. ASME
,
77
(
4
), pp.
455
469
.
6.
Day
,
I. J.
,
1991
, “
Stall Inception in Axial Flow Compressors
,”
ASME
Paper No. V001T01A034.
7.
Yoshida
,
Y.
,
Murakami
,
Y.
,
Tsurusaki
,
T.
, and
Tsujimoto
,
Y.
,
1991
, “
Rotating Stalls in Centrifugal Impeller/Vaned Diffuser Systems
,”
First ASME/JSME Joint Fluids Engineering Conference
, Portland, OR, June 23–27, pp.
125
130
.
8.
Sinha
,
M.
,
Pinarbasi
,
A.
, and
Katz
,
J.
,
2001
, “
The Flow Structure During Onset and Developed States of Rotating Stall Within a Vaned Diffuser of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
490
499
.
9.
Sano
,
T.
,
Yoshida
,
Y.
,
Tsujimoto
,
Y.
,
Nakamura
,
Y.
, and
Matsushima
,
T.
,
2002
, “
Numerical Study of Rotating Stall in a Pump Vaned Diffuser
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
363
370
.
10.
Berten
,
S.
,
Dupont
,
P.
,
Fabre
,
L.
,
Kayal
,
M.
,
Avellan
,
F.
, and
Farhat
,
M.
,
2009
, “
Experimental Investigation of Flow Instabilities and Rotating Stall in a High-Energy Centrifugal Pump Stage
,”
ASME
Paper No. FEDSM2009-78562.
11.
Li
,
X. J.
,
Yuan
,
S. Q.
,
Pan
,
Z. Y.
,
Li
,
Y.
, and
Liu
,
W.
,
2013
, “
Dynamic Characteristics of Rotating Stall in Mixed Flow Pump
,”
J. Appl. Math.
,
2013
, p.
104629
.
12.
Lucius
,
A.
, and
Brenner
,
G.
,
2010
, “
Unsteady CFD Simulations of a Pump in Part Load Conditions Using Scale-Adaptive Simulation
,”
Int. J. Heat Fluid Flow
,
31
(
6
), pp.
1113
1118
.
13.
Zhang
,
N.
,
Yang
,
M. G.
,
Gao
,
B.
,
Li
,
Z.
, and
Ni
,
D.
,
2014
, “
Unsteady Pressure Pulsation and Rotating Stall Characteristics in a Centrifugal Pump With Slope Volute
,”
Adv. Mech. Eng.
,
6
, p.
710791
.
14.
Yuan
,
S. Q.
,
Yang
,
J.
,
Yuan
,
J. P.
,
Luo
,
Y.
, and
Pei
,
J.
,
2012
, “
Experimental Investigation on the Flow-Induced Noise Under Variable Conditions for Centrifugal Pumps
,”
Chin. J. Mech. Eng.
,
25
(
3
), pp.
456
462
.
15.
Lucius
,
A.
, and
Brenner
,
G.
,
2011
, “
Numerical Simulation and Evaluation of Velocity Fluctuations During Rotating Stall of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
133
(
8
), p.
081102
.
16.
Xiao
,
Y. X.
,
Wang
,
Z. W.
,
Yan
,
Z. G.
,
Li
,
M.
,
Xiao
,
M.
, and
Liu
,
D. Y.
,
2010
, “
Numerical Analysis of Unsteady Flow Under High-Head Operating Conditions in Francis Turbine
,”
Eng. Comput.
,
27
(
3
), pp.
365
386
.
17.
Xiao
,
Y. X.
,
Zhu
,
W.
,
Wang
,
Z. W.
,
Zhang
,
J.
,
Zeng
,
C. J.
, and
Yao
,
Y. Y.
,
2016
, “
Analysis of the Internal Flow Behavior on S-Shaped Region of a Francis Pump Turbine on Turbine Mode
,”
Eng. Comput.
,
33
(
2
), pp.
543
561
.
18.
Xiao
,
Y. X.
,
Yao
,
Y. Y.
,
Wang
,
Z. W.
,
Zhang
,
J.
,
Luo
,
Y. Y.
,
Zeng
,
C. J.
, and
Zhu
,
W.
,
2016
, “
Hydrodynamic Mechanism Analysis of the Pump Hump District for a Pump-Turbine
,”
Eng. Comput.
,
33
(
3
), pp.
957
976
.
19.
Yang
,
J.
,
Meng
,
L.
,
Zhou
,
L. J.
,
Luo
,
Y. Y.
, and
Wang
,
Z. W.
,
2013
, “
Unsteady Internal Flow Field Simulations in a Double Suction Centrifugal Fan
,”
Eng. Comput.
,
30
(
3
), pp.
345
356
.
20.
Tao
,
R.
,
Xiao
,
R. F.
,
Yang
,
W.
, and
Wang
,
F. J.
,
2014
, “
A Comparative Assessment of Spalart-Shur Rotation/Curvature Correction in RANS Simulations in a Centrifugal Pump Impeller
,”
Math. Probl. Eng.
,
2014
, p.
342905
.
21.
Menter
,
F.
,
Kuntz
,
M.
, and
Bender
,
R.
,
2003
, “
A Scale-Adaptive Simulation Model for Turbulent Flow Predictions
,”
AIAA
Paper No. 2003-767.
22.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.
23.
Cala
,
C. E.
,
Fernandes
,
E.
,
Heitor
,
M. V.
, and
Shtork
,
S. I.
,
2006
, “
Coherent Structures in Unsteady Swirling Jet Flow
,”
Exp. Fluids
,
40
(
2
), pp.
267
276
.
24.
Martinelli
,
F.
,
Cozzi
,
F.
, and
Coghe
,
A.
,
2012
, “
Phase-Locked Analysis of Velocity Fluctuations in a Turbulent Free Swirling Jet After Vortex Breakdown
,”
Exp. Fluids
,
53
(
2
), pp.
437
449
.
25.
Cavazzini
,
G.
,
Pavesi
,
G.
, and
Ardizzon
,
G.
,
2011
, “
Pressure Instabilities in a Vaned Centrifugal Pump
,”
Proc. Inst. Mech. Eng., Part A
,
225
(
7
), pp.
930
939
.
26.
Tan
,
L.
,
Zhu
,
B. S.
,
Wang
,
Y. C.
,
Cao
,
S. L.
, and
Gui
,
S. B.
,
2015
, “
Numerical Study on Characteristics of Unsteady Flow in a Centrifugal Pump Volute at Partial Load Condition
,”
Eng. Comput.
,
32
(
6
), pp.
1549
1566
.
27.
Krause
,
N.
,
Zähringer
,
K.
, and
Pap
,
E.
,
2005
, “
Time-Resolved Particle Imaging Velocimetry for the Investigation of Rotating Stall in a Radial Pump
,”
Exp. Fluids
,
39
(
2
), pp.
192
201
.
28.
Shibata
,
A.
,
Hiramatsu
,
H.
,
Komaki
,
S.
,
Miyagawa
,
K.
,
Maeda
,
M.
,
Kamei
,
S.
,
Hazama
,
R.
,
Sano
,
T.
, and
Iino
,
M.
,
2016
, “
Study of Flow Instability in Off Design Operation of a Multistage Centrifugal Pump
,”
J. Mech. Sci. Technol.
,
30
(
2
), pp. 493–498.
You do not currently have access to this content.