The erosion-corrosion problem of gas well pipeline under gas–liquid two-phase fluid flow is crucial for the natural gas well production, where multiphase transport phenomena expose great influences on the feature of erosion-corrosion. A Eulerian–Eulerian two-fluid flow model is applied to deal with the three-dimensional gas–liquid two-phase erosion-corrosion problem and the chemical corrosion effects of the liquid droplets dissolved with CO2 on the wall are taken into consideration. The amount of erosion and chemical corrosion is predicted. The erosion-corrosion feature at different parts including expansion, contraction, step, screw sections, and bends along the well pipeline is numerically studied in detail. For dilute droplet flow, the interaction between flexible water droplets and pipeline walls under different operations is treated by different correlations according to the liquid droplet Reynolds numbers. An erosion-corrosion model is set up to address the local corrosion and erosion induced by the droplets impinging on the pipe surfaces. Three typical cases are studied and the mechanism of erosion-corrosion for different positions is investigated. It is explored by the numerical simulation that the erosion-corrosion changes with the practical production conditions: Under lower production rate, chemical corrosion is the main cause for erosion-corrosion; under higher production rate, erosion predominates greatly; and under very high production rate, erosion becomes the main cause. It is clarified that the parts including connection site of oil pipe, oil pipe set, and valve are the places where erosion-corrosion origins and becomes serious. The failure mechanism is explored and good comparison with field measurement is achieved.

References

1.
Zeng
,
L.
,
Shuang
,
S.
,
Guo
,
X. P.
, and
Zhang
,
G. A.
,
2016
, “
Erosion-Corrosion of Stainless Steel at Different Locations of a 90° Elbow
,”
Corros. Sci.
,
111
, pp.
72
83
.
2.
Zheng
,
Z. B.
, and
Zheng
,
Y. G.
,
2016
, “
Effects of Surface Treatments on the Corrosion and Erosion-Corrosion of 304 Stainless Steel in 3.5% NaCl Solution
,”
Corros. Sci.
,
112
, pp.
657
668
.
3.
Zhu
,
M.
,
Sun
,
L.
,
Ou
,
G.
,
Wang
,
K.
,
Wang
,
Y.
, and
Sun
,
Y.
,
2016
, “
Erosion Corrosion Failure Analysis of the Elbow in Sour Water Stripper Overhead Condensing Reflux System
,”
Eng. Failure Anal.
,
62
, pp.
93
102
.
4.
Ige
,
O. O.
, and
Umoru
,
L. E.
,
2016
, “
Effects of Shear Stress on the Erosion-Corrosion Behaviour of X-65 Carbon Steel: A Combined Mass-Loss and Profilometry Study
,”
Tribol. Int.
,
94
, pp.
155
164
.
5.
Zhu
,
M.
,
Guofu
,
O.
,
Haozhe
,
J.
,
Kuanxin
,
W.
, and
Zhijian
,
Z.
,
2015
, “
Top of the REAC Tube Corrosion Induced by Under Deposit Corrosion of Ammonium Chloride and Erosion Corrosion
,”
Eng. Failure Anal.
,
57
, pp.
483
489
.
6.
Mazumder
,
Q. H.
,
Kawshik
,
A.
, and
Siwen
,
Z.
,
2016
, “
Experimental Investigation of Solid Particle Erosion in S-Bend
,”
ASME J. Fluids Eng.
,
138
(4), p. 044501.
7.
Horii
,
K.
,
Matsumae
,
Y.
,
Cheng
,
X. M.
,
Takei
,
M.
,
Yasukawa
,
E.
, and
Hashimoto
,
B.
,
1991
, “
An Erosion Resistant Pipe Bend
,”
ASME J. Fluids Eng.
,
113
(
1
), pp.
149
151
.
8.
Schmehl
,
R.
,
Rosskamp
,
H.
,
Willmann
,
M.
, and
Wittig
,
S.
,
1999
, “
CFD Analysis of Spray Propagation and Evaporation Including Wall Film Formation and Spray/Film Interactions
,”
Int. J. Heat Fluid Flow
,
20
(
5
), pp.
520
529
.
9.
Park
,
K.
, and
Watkins
,
A. P.
,
1996
, “
Comparison of Wall Spray Impaction Models With Experimental Data on Drop Velocities and Sizes
,”
Int. J. Heat Fluid Flow
,
17
(
4
), pp.
424
438
.
10.
Mazumder
,
Q. H.
,
Shirazi
,
S. A.
, and
Mclaury
,
B. S.
,
2008
, “
Prediction of Solid Particle Erosive Wear of Elbows in Multiphase Annular Flow-Model Development and Experimental Validations
,”
ASME J. Energy Resour. Technol.
,
130
(
2
), pp.
220
254
.
11.
Stack
,
M. M.
,
Chacon-Nava
,
J.
, and
Stott
,
F. H.
,
1995
, “
Relationship Between the Effects of Velocity and Alloy Corrosion Resistance in Erosion-Corrosion Environments at Elevated Temperatures
,”
Wear
,
180
(
1–2
), pp.
91
99
.
12.
Poulson
,
B.
,
1999
, “
Complexities in Predicting Erosion Corrosion
,”
Wear
,
233–235
, pp.
497
504
.
13.
Syrett
,
B. C.
,
1976
, “
Erosion-Corrosion of Copper-Nickel Alloys in Sea Water and Other Aqueous Environments—A Literature Review
,”
Corrosion
,
32
(
6
), pp.
242
252
.
14.
Clark
,
H. M.
,
1992
, “
The Influence of the Flow Field in Slurry Erosion
,”
Wear
,
152
(
2
), pp.
223
240
.
15.
Stack
,
M. M.
,
Corlett
,
N.
, and
Zhou
,
S.
,
1996
, “
Construction of Erosion–Corrosion Maps for Erosion in Aqueous Slurries
,”
Mater. Sci. Technol.
,
12
(
8
), pp.
662
672
.
16.
Esmaeilpour
,
M.
,
Ezequiel Martin
,
J.
, and
Carrica
,
P.
,
2017
, “
Computational Fluid Dynamics Study of the Dead Water Problem
,”
ASME J. Fluids Eng.
,
140
(
3
), p.
031203
.
17.
Lefebvre, A.
,
H.
,
1989
,
Atomization and Sprays
,
Hemisphere
, New York.
18.
Schiller
,
L.
,
1933
, “
A Drag Coefficient Correlation
,” Z. Vereines Ingenieure,
77
, pp. 318–320.
19.
Ishii
,
M.
, and
Zuber
,
N.
,
1979
, “
Drag Coefficient and Relative Velocity in Bubbly, Droplet or Particulate Flows
,”
AIChE J.
,
25
(
5
), pp.
843
855
.
20.
Pang
,
M. J.
, and
Wei
,
J. J.
, 2010, “
P2.50—Analysis of Drag and Lift Coefficient Models of Bubbly Flow System for Low to Median Reynolds Number Bubbly Flows
,” Seventh International Conference on Multiphase Flow, Tampa, FL, May 30–June 4.
21.
Pots, B. F. M., John, R. C., Rippon, I. J., Simon Thomas, M. J. J., Kapusta, S. D., Grigs, M. M., and Whitham, T.,
2002
, “
Improvements on de Waard-Milliams Corrosion Prediction and Applications to Corrosion Management
,”
Corrosion
, Denver, CO, Apr. 7–11, Paper No. NACE-02235https://www.onepetro.org/conference-paper/NACE-02235.
22.
Waard
,
C.
,
De
,
U.
,
Lotz
,
D. E.
, and
Milliams
,
2012
, “
Predictive Model for CO2 Corrosion Engineering in Wet Natural Gas Pipelines
,”
Corrosion
,
47
(
12
), pp.
976
985
.
23.
Dewaard
,
C.
, and
Milliams
,
D. E.
,
1975
, “
Prediction of Carbonic Acid Corrosion in Natural Gas Pipelines
,”
Ind. Finish. Surf. Coatings
,
28
(340), pp. 24–26.
24.
Al-Aithan
,
G. H.
,
Al-Mutahar
,
F. M.
,
Shadley
,
J. R.
,
Shirazi
,
S. A.
,
Rybicki
,
E. F.
, and
Roberts
,
K. P.
,
2014
, “
A Mechanistic Erosion-Corrosion Model for Predicting Iron Carbonate (FeCO3) Scale Thickness in a CO2 Environment With Sand
,” Corrosion, San Antonio, TX, Mar 9–13, Paper No.
NACE-2014-3854
https://www.onepetro.org/conference-paper/NACE-2014-3854.
25.
Albertini
,
C.
,
2012
, “
Advanced Process Simulation and Erosion-Corrosion Modeling Applied to Material Selection and Fitness for Service of Gas Production Wells
,” CORROSION, Salt Lake City, UT, Mar. 11–15.
26.
Nešiĉ
,
S.
, and
Postlethwaite
,
J.
,
1991
, “
Hydrodynamics of Disturbed Flow and Erosion–Corrosion—Part II: Two-Phase Flow Study
,”
Can. J. Chem. Eng.
,
69
(
3
), pp.
704
710
.
27.
Kondo
,
M.
,
Muroga
,
T.
,
Sagara
,
A.
,
Valentyn
,
T.
,
Suzuki
,
A.
,
Terai
,
T.
,
Takahashi
,
M.
,
Fujii
,
N.
,
Yokoyama
,
Y.
, and
Miyamoto
,
H.
,
2011
, “
Flow Accelerated Corrosion and Erosion–Corrosion of RAFM Steel in Liquid Breeders
,”
Fusion Eng. Des.
,
86
(
9–11
), pp.
2500
2503
.
28.
Costa
,
J. M.
, and
Mercer
,
A. D.
, and
1993
, “
Progress in the Understanding and Prevention of Corrosion
,”
Institute of Materials, European Federation of Corrosion
.
29.
Nesic
,
S.
,
Postlethwaite
,
J.
, and
Olsen
,
S.
,
2013
, “
An Electrochemical Model for Prediction of Corrosion of Mild Steel in Aqueous Carbon Dioxide Solutions
,”
Corrosion
,
52
(
4
), pp.
280
294
.
30.
Nyborg
,
R.
,
2002
, “
Overview of CO2 Corrosion Models for Wells and Pipelines
,” CORROSION, Denver, CO, Apr. 7–11.
31.
Messa
,
G. V.
, and
Malavasi
,
S.
,
2017
, “
The Effect of Sub-Models and Parameterizations in the Simulation of Abrasive Jet Impingement Tests
,”
Wear
,
370–371
, pp.
59
72
.
32.
Raask
,
E.
,
1969
, “
Tube Erosion by Ash Impaction
,”
Wear
,
13
(
4–5
), pp.
301
315
.
33.
Tilly
,
G. P.
,
1979
, “
Erosion Caused by Impact of Solid Particles
,”
Treatise Mater. Sci. Technol.
,
13
, pp.
287
319
.
34.
Huser
,
A.
, and
Oddmund
,
K.
,
1998
, “
Prediction of Sand Erosion in Process and Pipe Components
,” BHR Group Conference Series Publication,
31
, pp. 217–228.
35.
McLaury
,
S. B.
, and
Shirazi
,
A. S.
,
2000
, “
An Alternate Method to API RP 14E for Predicting Solids Erosion in Multiphase Flow
,”
ASME J. Energy Resour. Technol.
,
122
(
3
), pp.
115
122
.
36.
Zheng
,
Y.
,
Zhiming
,
Y.
, and
Wei
,
K. E.
,
2000
, “
Review on the Effects of Hydrodynamic Factors on Erosion Corrosion
,”
Corrsion Sci. Technol. Prot.
,
12
(
1
), pp.
38
40
.
37.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1990
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
38.
API
,
1991
, “
Recommended Practice for Design and Installation of Offshore Production Platform Piping Systems
,”
American Petroleum Institute
, Washington, DC.
You do not currently have access to this content.