Stokes flow in the branches of structured looped networks with successive identical square loops and T-junction branches is studied. Analytical expressions of the flow rate in the branches are determined for network of one, two, three, or four loops with junction head loss neglected relative to regular one. Then, a general expression of the flow rate is deduced for networks with more loops. This expression contains particularly a sequence of coefficients obeying to a recurrence formula. This sequence is a part of the fusion of Fibonacci and Tribonacci sequences. Furthermore, a general formula that expresses the quotient of flow rate in successive junction flow branches is given. The limit of this quotient for an infinite number of junction branches is found to be equal to 2+3. When the inlet and outlet flow rates are equal, this quotient obeys to a sequence of invariant numbers whatever the ratio of flow rate in the outlet branches is. Thus, the flow rate distribution for any configuration of inlet and outlet flow rates can be calculated. This study is also performed using Hardy–Cross method and a commercial solver of Navier-Stokes equation. The analytical results are approached very well with Hardy–Cross method. The numerical resolution agrees also with analytical results. However, the difference with the numerical results becomes significant for low flow rate in the junction branches. The flow streamlines are then determined for some inlet and outlet flow rate configurations. They particularly illustrate that recirculation flow takes place in branches of low flow rate.

References

1.
Ho
,
C. K.
,
2008
, “
Solute Mixing Models for Water Distribution Pipe Networks
,”
J. Hydraul. Eng.
,
134
(
9
), pp.
1236
1244
.
2.
Koo
,
J. M.
,
Im
,
S.
,
Jiang
,
L. E.
, and
Goodson
,
K.
,
2005
, “
Integrated Microchannel Cooling for Three-Dimensional Electronic Circuit Architectures
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
49
58
.
3.
Rocha
,
L.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2006
, “
Conduction Tree Networks With Loops for Cooling a Heat Generating Volume
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2626
2635
.
4.
Tomor
,
A.
, and
Kristof
,
G.
,
2017
, “
Hydraulic Loss of Finite Length Dividing Junctions
,”
ASME J. Fluids Eng.
,
139
(
3
), p.
031104
.
5.
Stone
,
H. A.
,
Stroock
,
A. D.
, and
Ajdari
,
A.
,
2004
, “
Engineering Flows in Small Devices: Microfluidics Toward a Lab on a Chip
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
381
411
.
6.
Menech
,
M. D.
,
Garstecki
,
P.
,
Jousse
,
F.
, and
Stone
,
H. A.
,
2008
, “
Transition From Squeezing to Dripping in a Microfluidic t-Shaped Junction
,”
J. Fluid Mech.
,
595
, pp.
141
161
.
7.
Oh
,
K. W.
,
Lee
,
K.
,
Ahn
,
B.
, and
Furlani
,
E. P.
,
2012
, “
Design of Pressure-Driven Microfluidic Networks Using Electric Circuit Analogy
,”
Lab Chip
,
12
(
3
), pp.
515
545
.
8.
Guan
,
J.
,
Liu
,
J.
,
Li
,
X.
,
Tao
,
J.
, and
Wang
,
J.
,
2015
, “
Stokes Flow in a Two-Dimensional Micro-Device Combined by a Cross-Slot and a Microfluidic Four-Roll Mill
,”
Z. Angew. Math. Phys.
,
66
(
1
), pp.
149
169
.
9.
Nekouei
,
M.
, and
Vanapalli
,
S. A.
,
2017
, “
Volume-of-Fluid Simulations in Microfluidic T-Junction Devices: Influence of Viscosity Ratio on Droplet Size
,”
Phys. Fluids
,
29
(
3
), pp.
1
22
.
10.
O'Hayre
,
R.
,
Cha
,
S. W.
,
Colella
,
W.
, and
Prinz
,
F. B.
,
2009
,
Fuel Cell Fundamentals
, 2nd ed,
John Wiley and Sons
,
Hoboken, NJ
.
11.
Rabaey
,
K.
, and
Verstraete
,
W.
,
2005
, “
Microbial Fuel Cells: Novel Biotechnology for Energy Generation
,”
Trends Biotechnol.
,
23
(
6
), pp.
291
298
.
12.
Shaegh
,
S. A. M.
,
Nguyen
,
N. T.
, and
Chan
,
S. H.
,
2011
, “
A Review on Membraneless Laminar Flow-Based Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
(
9
), pp.
5675
5694
.
13.
Miller
,
D. S.
,
1990
,
Internal Flow Systems
, 2nd ed.,
British Hydromechanics Research Association (BHRA)
,
Cranfield, UK
.
14.
Jeong
,
J. T.
,
2001
, “
Slow Viscous Flow in a Partitioned Channel
,”
Phys. Fluids
,
13
(
6
), p.
1577
.
15.
Hellou
,
M.
, and
Bach
,
T. D. P.
,
2011
, “
Stokes Flow in a Junction of Two-Dimensional Orthogonal Channels
,”
Z. Angew. Math. Phys.
,
62
(
1
), pp.
135
147
.
16.
Cachile
,
M.
,
Talon
,
L.
,
Gomba
,
J. M.
,
Hulin
,
J. P.
, and
Auradou
,
H.
,
2012
, “
Stokes Flow Paths Separation and Recirculation Cells in x-Junctions of Varying Angle
,”
Phys. Fluids
,
24
(
2
), p.
021704
.
17.
Hellou
,
M.
, and
Bour
,
O.
,
2014
, “
Transient Mass Transport Within Stokes Eddies Induced in a Junction of Orthogonal Flow Branches
,”
J. Hydraul. Eng.
,
140
(
5
), p.
04014007
.
18.
Ramamurthy
,
A. S.
,
Qu
,
J.
, and
Zhai
,
C.
,
2006
, “
3d Simulation of Combining Flows in 90 deg Rectangular Closed Conduits
,”
J. Hydraul. Eng.
,
132
(
2
), pp.
214
218
.
19.
Costa
,
N. P.
,
Maia
,
R.
,
Proenca
,
M. F.
, and
Pinho
,
F. T.
,
2006
, “
Edges Effects on the Flow Characteristics in a 90 Deg Tee Junction
,”
ASME J. Fluids Eng.
,
128
(
6
), pp.
1204
1217
.
20.
Xin
,
L.
, and
Shaoping
,
W.
,
2013
, “
Flow Field and Pressure Loss Analysis of Junction and Its Structure Optimization of Aircraft Hydraulic Pipe System
,”
Chin. J. Aeronaut.
,
26
(
4
), pp.
1080
1092
.
21.
Nikfetrat
,
K.
,
Johnson
,
M. C.
, and
Sharp
,
Z. B.
,
2015
, “
Computer Simulations Using Pattern Specific Loss Coefficients for Cross Junctions
,”
J. Hydraul. Eng.
,
141
(
9
), p.
04015018
.
22.
Ho
,
C. K.
, and
O'Rear
,
J. L.
,
2009
, “
Solute Mixing Models for Water Distribution Pipe Networks
,”
J. AWWA
,
101
(
9
), pp.
116
127
.
23.
Schmandt
,
B.
, and
Herwig
,
H.
,
2014
, “
Losses Due to the Flow Through Conduit Components in Mini- and Micro-Systems Accounted for by Head Loss/Change Coefficients
,”
ASME
Paper No. ICNMM2014-21098.
24.
Ji
,
Y.
,
Zhang
,
H. C.
,
Zhang
,
Y. N.
,
Li
,
Y.
, and
Yan
,
L. M.
,
2014
, “
Estimation of Loss Coefficient for T-Junction by an Entropy Production Approach
,”
ASME
Paper No. ICONE22-30934.
25.
Stigler
,
J.
,
Klas
,
R.
, and
Sperka
,
O.
,
2014
, “
Characteristics of the t-Junction With the Equal Diameters of All Branches for the Variable Angle of the Adjacent Branch
,”
EPJ Web Conferences
,
67
, pp.
1
12
.
26.
Churchill
,
S. W.
, and
Usagi
,
R.
,
1974
, “
Standardized Procedure for the Production of Correlations in the Form of a Common Empirical Equation
,”
Ind. Eng. Chem. Fundam.
,
13
(
1
), pp.
39
44
.
27.
Cross
,
H.
,
1932
, “
Analysis of Continuous Frames by Distributing Fixed-End Moments
,”
Trans. ASCE
,
96
(
1793
), pp.
919
928
.
28.
Arsene
,
C. T. C.
,
Bargiela
,
A.
, and
Al-Dabass
,
D.
,
2004
, “
Modelling and Simulation of Water Systems Based on Loop Equations
,”
Int. J. Simul.
,
5
(
1–2
), pp.
61
72
.
29.
Brkić
,
D.
,
2009
, “
An Improvement of Hardy Cross Method Applied on Looped Spatial Natural Gas Distribution Networks
,”
Appl. Energy
,
86
(
7–8
), pp.
1290
1300
.
30.
O'Neill
,
M. E.
,
1983
, “
On Angles of Separation in Stokes Flows
,”
J. Fluid Mech.
,
133
(
1
), p.
427
.
31.
Moreau
,
F.
, and
Bourot
,
J. M.
,
1993
, “
Ecoulements Cellulaires De Stokes Produits En Canal Plan Illimité Par La Rotation De Deux Cylindres
,”
Z. Angew. Math. Phys.
,
44
(
5
), pp.
777
798
.
32.
Hellou
,
M.
, and
Coutanceau
,
M.
,
1992
, “
Cellular Stokes Flow Induced by Rotation of a Cylinder in a Closed Channel
,”
J. Fluid Mech.
,
236
(
1
), pp.
557
577
.
33.
Shankar
,
P. N.
, and
Deshpande
,
M. D.
,
2000
, “
Fluid Mechanics in the Driven Cavity
,”
Annu. Rev. Fluid Mech.
,
32
(
1
), pp.
93
136
.
34.
Wang
,
C. Y.
,
1999
, “
Stokes Flow Through a Staggered Array of Rectangular Cylinders and the Junction Resistance
,”
Z. Angew. Math. Phys.
,
50
(
6
), pp.
982
998
.
35.
Wang
,
C. Y.
,
2010
, “
Flow Through a Finned Channel Filled With a Porous Medium
,”
Chem. Eng. Sci.
,
65
(
5
), pp.
1826
1831
.
You do not currently have access to this content.