A laser-induced fluorescence (LIF)-based nitric-oxide flow-tagging technique was applied to measure both velocity and NO lifetime in a hypersonic shock tunnel from two experimental test runs. The results were supported by an analytical profile proposed in this paper that provides a way to correct velocity measurements under unknown systematic error sources. This procedure provided velocities with discrepancies lower than 3% for a total of five measurements, and lower than 2% when compared with that obtained from a linear fit. Additionally, the comparison between the proposed and experimental profiles allowed us to obtain the fluorescence NO lifetime from only one image.

References

References
1.
Lawson
,
N.
, and
Wu
,
J.
,
1997
, “
Three-Dimensional Particle Image Velocimetry: Experimental Error Analysis of a Digital Angular Stereoscopic System
,”
Meas. Sci. Technol.
,
8
(
12
), p.
1455
.
2.
Haertig
,
J.
,
Havermann
,
M.
,
Rey
,
C.
, and
George
,
A.
,
2002
, “
Particle Image Velocimetry in Mach 3.5 and 4.5 Shock-Tunnel Flows
,”
AIAA J.
,
40
(
6
), pp.
1056
1060
.
3.
Meier
,
A. H.
, and
Roesgen
,
T.
,
2012
, “
Imaging Laser Doppler Velocimetry
,”
Exp. Fluids
,
52
(
4
), pp.
1017
1026
.
4.
Meyers
,
J. F.
,
1995
, “
Development of Doppler Global Velocimetry as a Flow Diagnostics Tool
,”
Meas. Sci. Technol.
,
6
(
6
), p.
769
.
5.
Ainsworth
,
R.
,
Thorpe
,
S.
, and
Manners
,
R.
,
1997
, “
A New Approach to Flow-Field Measurement—A View of Doppler Global Velocimetry Techniques
,”
Int. J. Heat Fluid Flow
,
18
(
1
), pp.
116
130
.
6.
Vedula
,
R.
,
Mittal
,
M.
, and
Schock
,
H. J.
,
2013
, “
Molecular Tagging Velocimetry and Its Application to In-Cylinder Flow Measurements
,”
ASME J. Fluids Eng.
,
135
(
12
), p.
121203
.
7.
Miles
,
R.
,
Connors
,
J.
,
Markovitz
,
E.
,
Howard
,
P.
, and
Roth
,
G.
,
1989
, “
Instantaneous Profiles and Turbulence Statistics of Supersonic Free Shear Layers by Raman Excitation Plus Laser-Induced Electronic Fluorescence (Relief) Velocity Tagging of Oxygen
,”
Exp. Fluids
,
8
(
1–2
), pp.
17
24
.
8.
Miles
,
R. B.
,
Grinstead
,
J.
,
Kohl
,
R. H.
, and
Diskin
,
G.
,
2000
, “
The Relief Flow Tagging Technique and Its Application in Engine Testing Facilities and for Helium-Air Mixing Studies
,”
Meas. Sci. Technol.
,
11
(
9
), p.
1272
.
9.
Ribarov
,
L.
,
Wehrmeyer
,
J.
,
Pitz
,
R.
, and
Yetter
,
R.
,
2002
, “
Hydroxyl Tagging Velocimetry (HTV) in Experimental Air Flows
,”
Appl. Phys. B
,
74
(
2
), pp.
175
183
.
10.
Pitz
,
R. W.
,
Lahr
,
M. D.
,
Douglas
,
Z. W.
,
Wehrmeyer
,
J. A.
,
Hu
,
S.
,
Carter
,
C. D.
,
Hsu
,
K.-Y.
,
Lum
,
C.
, and
Koochesfahani
,
M. M.
,
2005
, “
Hydroxyl Tagging Velocimetry in a Supersonic Flow Over a Cavity
,”
Appl. Opt.
,
44
(
31
), pp.
6692
6700
.
11.
Pitz
,
R. W.
,
Debarber
,
P. A.
,
Brown
,
M. S.
,
Brown
,
T. M.
,
Nandula
,
S. P.
,
Segall
,
J.
, and
Skaggs
,
P. A.
,
1996
, “
Unseeded Velocity Measurement by Ozone Tagging Velocimetry
,”
Opt. Lett.
,
21
(
10
), pp.
755
757
.
12.
Pitz
,
R. W.
,
Wehrmeyer
,
J. A.
,
Ribarov
,
L. A.
,
Oguss
,
D. A.
,
Batliwala
,
F.
,
DeBarber
,
P. A.
,
Deusch
,
S.
, and
Dimotakis
,
P. E.
,
2000
, “
Unseeded Molecular Flow Tagging in Cold and Hot Flows Using Ozone and Hydroxyl Tagging Velocimetry
,”
Meas. Sci. Technol.
,
11
(
9
), p.
1259
.
13.
Sánchez-González
,
R.
,
Srinivasan
,
R.
,
Bowersox
,
R. D.
, and
North
,
S. W.
,
2011
, “
Simultaneous Velocity and Temperature Measurements in Gaseous Flow Fields Using the Venom Technique
,”
Opt. Lett.
,
36
(
2
), pp.
196
198
.
14.
Sánchez-González
,
R.
,
Bowersox
,
R. D.
, and
North
,
S. W.
,
2014
, “
Vibrationally Excited NO Tagging by NO (A2Σ+) Fluorescence and Quenching for Simultaneous Velocimetry and Thermometry in Gaseous Flows
,”
Opt. Lett.
,
39
(
9
), pp.
2771
2774
.
15.
Dam
,
N.
,
Klein-Douwel
,
R.
,
Sijtsema
,
N. M.
, and
Ter Meulen
,
J.
,
2001
, “
Nitric Oxide Flow Tagging in Unseeded Air
,”
Opt. Lett.
,
26
(
1
), pp.
36
38
.
16.
Sijtsema
,
N.
,
Dam
,
N.
,
Klein-Douwel
,
R.
, and
Meulen
,
J. T.
,
2002
, “
Air Photolysis and Recombination Tracking: A New Molecular Tagging Velocimetry Scheme
,”
AIAA J.
,
40
(
6
), pp.
1061
1064
.
17.
Bominaar
,
J.
,
Pashtrapanska
,
M.
,
Elenbaas
,
T.
,
Dam
,
N.
,
Ter Meulen
,
H.
, and
van de Water
,
W.
,
2008
, “
Writing in Turbulent Air
,”
Phys. Rev. E
,
77
(
4
), p.
046312
.
18.
Michael
,
J. B.
,
Edwards
,
M. R.
,
Dogariu
,
A.
, and
Miles
,
R. B.
,
2011
, “
Femtosecond Laser Electronic Excitation Tagging for Quantitative Velocity Imaging in Air
,”
Appl. Opt.
,
50
(
26
), pp.
5158
5162
.
19.
Jiang
,
N.
,
Halls
,
B. R.
,
Stauffer
,
H. U.
,
Danehy
,
P. M.
,
Gord
,
J. R.
, and
Roy
,
S.
,
2016
, “
Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging Velocimetry
,”
Opt. Lett.
,
41
(
10
), pp.
2225
2228
.
20.
Zhang
,
S.
,
Yu
,
X.
,
Yan
,
H.
,
Huang
,
H.
, and
Liu
,
H.
,
2017
, “
Molecular Tagging Velocimetry of NH Fluorescence in a High-Enthalpy Rarefied Gas Flow
,”
Appl. Phys. B
,
123
(
4
), p.
122
.
21.
Hall
,
C. A.
,
Ramsey
,
M. C.
,
Knaus
,
D. A.
, and
Pitz
,
R. W.
,
2017
, “
Molecular Tagging Velocimetry in Nitrogen With Trace Water Vapor
,”
Meas. Sci. Technol.
,
28
(
8
), p. 085201.
22.
Danehy
,
P. M.
,
O Byrne
,
S.
,
Houwing
,
A. F. P.
,
Fox
,
J. S.
, and
Smith
,
D. R.
,
2003
, “
Flow-Tagging Velocimetry for Hypersonic Flows Using Fluorescence of Nitric Oxide
,”
AIAA J.
,
41
(
2
), pp.
263
271
.
23.
Heard
,
D. E.
,
Jeffries
,
J. B.
, and
Crosley
,
D. R.
,
1991
, “
Collisional Quenching of A2Σ+ NO and A2Δ CH in Low Pressure Flames
,”
Chem. Phys. Lett.
,
178
(
5–6
), pp.
533
537
.
24.
Paul, P. H.
,
Gray, J. A.
,
Durant, J. L.
, and
Thoman, J. W.
,
1994
, “
Collisional Quenching Corrections for Laser-Induced Fluorescence Measurements of NO A2Sigma(+)
,”
AIAA J.
,
32
(
8
), pp.
1670
1675
.
25.
Toro
,
P.
,
Minucci
,
M.
,
Chanes
,
J.
, Jr.
,
Oliveira
,
A.
,
Gomes
,
F.
,
Myrabo
,
L.
, and
Nagamatsu
,
H. T.
,
2008
, “
New Hypersonic Shock Tunnel at the Laboratory of Aerothermodynamics and Hypersonics Prof. Henry T. Nagamatsu
,”
AIP Conf. Proc.
,
997
, pp.
173
184
.
26.
Minucci
,
M.
, and
Nagamatsu
,
H.
,
1993
, “
Hypersonic Shock-Tunnel Testing at an Equilibrium Interface Condition of 4100 K
,”
J. Thermophys. Heat Transfer
,
7
(
2
), pp.
251
260
.
27.
McBride
,
B. J.
,
Zehe
,
M. J.
, and
Gordon
,
S.
,
2002
, “
NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA-TP-2002-211556
.https://www.grc.nasa.gov/WWW/CEAWeb/TP-2002-211556.pdf
You do not currently have access to this content.