The performance of the transition models on three-dimensional (3D) flow of wings with aspect ratios (AR) of 1 and 3 at low Reynolds number was assessed in this study. For experimental work; force measurements, surface oil and smoke-wire flow visualizations were performed over the wings with NACA4412 section at Reynolds numbers of 2.5 × 104, 5 × 104, and 7.5 × 104 and the angles of attack of 8 deg, 12 deg, and 20 deg. Results showed that the AR had significant effects on the 3D flow structure over the wing. According to the experimental and numerical results, the flow over the wing having lower ARs can be defined with wingtip vortices, axial flow, and secondary flow including spiral vortex inside the separated flow. When the angle of attack and Reynolds number was increased, wing-tip vortices were enlarged and interacted with the axial flow. At higher AR, flow separation was dominant, whereas wing-tip vortices suppressed the flow separation over the wing with lower AR. In the numerical results, while there were some inconsistencies in the prediction of lift coefficients, the predictions of drag coefficients for two transition models were noticeably better. The performance of the transition models judged from surface patterns was good, but the k–kLω was preferable. Secondary flow including spiral vortices near the surface was predicted accurately by the k–kLω. Consequently, in comparison with experiments, the predictions of the k–kLω were better than those of the shear stress transport (SST) transition.

References

References
1.
Genç
,
M. S.
,
Karasu
,
İ.
,
Açıkel
,
H. H.
, and
Akpolat
,
M. T.
,
2012
, “
Low Reynolds Number Flows and Transition
,”
Low Reynolds Number Aerodynamics and Transition
,
M.
Serdar Genç
, ed.,
InTech-Open Access Publishing
, Rijeka, Croatia.
2.
Bleischwitz
,
R.
,
Kat
,
R. D.
, and
Ganapathisubramani
,
B.
,
2015
, “
Aspect-Ratio Effects on Aeromechanics of Membrane Wings at Moderate Reynolds Numbers
,”
AIAA J.
,
53
(
3
), pp.
780
788
.
3.
Gim
,
O.-S.
, and
Lee
,
G.-W.
,
2013
, “
Flow Characteristics and Tip Vortex Formation Around a NACA 0018 Foil With Anendplate
,”
Ocean Eng.
,
60
, pp.
28
38
.
4.
Viieru
,
D.
,
Albertani
,
R.
,
Shyy
,
W.
, and
Ifju
,
P. G.
,
2005
, “
Effect of Tip Vortex on Wing Aerodynamics of Micro Air Vehicles
,”
J. Aircr.
,
42
(
6
), pp.
1530
1536
.
5.
Bastedo
,
W. G.
, and
Mueller
,
T. J.
,
1986
, “
Spanwise Variation of Laminar Separation Bubbles on Wings at Low Reynolds Number
,”
J. Aircr.
,
23
(
9
), pp.
687
694
.
6.
Giuni
,
M.
, and
Green
,
R. B.
,
2013
, “
Vortex Formation on Squared and Rounded Tip
,”
Aerosp. Sci. Technol.
,
29
(
1
), pp.
191
199
.
7.
Chow
,
J. S.
,
Zilliac
,
G. G.
, and
Bradshaw
,
P.
,
1997
, “
Mean and Turbulence Measurements in the Near Field of a Wingtip Vortex
,”
AIAA J.
,
35
(
10
), pp.
1561
1567
.
8.
Ahmadi-Baloutaki
,
M.
,
Carriveau
,
R.
, and
Ting
,
D. S.-K.
,
2015
, “
An Experimental Study on the Interaction Between Free-Stream Turbulence and a Wing-Tip Vortex in the Near-Field
,”
Aerosp. Sci. Technol.
,
43
, pp.
395
405
.
9.
Liang
,
Z.-C.
, and
Xue
,
L.-P.
,
2014
, “
Detached-Eddy Simulation of Wing-Tip Vortex in the Near Field of NACA 0015 Airfoil
,”
J. Hydrodyn., Ser. B
,
26
(
2
), pp.
199
206
.
10.
Birch
,
D.
,
Lee
,
T.
,
Mokhtarian
,
F.
, and
Kafyeke
,
F.
,
2004
, “
Structure and Induced Drag of a Tip Vortex
,”
J. Aircr.
,
41
(
5
), pp.
1138
1145
.
11.
O'Regan
,
M.
,
Griffin
,
P.
, and
Young
,
T.
,
2016
, “
A Vorticity Confinement Model Applied to URANS and LES Simulations of a Wing-Tip Vortex in the Near-Field
,”
Int. J. Heat Fluid Flow
,
61
(Pt. B), pp.
355
365
.
12.
Churchfield
,
M. J.
, and
Blaisdell
,
G. A.
,
2009
, “
Numerical Simulations of a Wingtip Vortex in the Near Field
,”
J. Aircr.
,
46
(
1
), pp.
230
243
.
13.
Torres
,
G. E.
, and
Mueller
,
T. J.
,
2004
, “
Low Aspect Ratio Aerodynamics at Low Reynolds Numbers
,”
AIAA J.
,
42
(
5
), pp.
865
873
.
14.
Liu
,
Y.-C.
, and
Hsiao
,
F.-B.
,
2014
, “
Experimental Investigation on Critical Reynolds Numbers Aerodynamic Properties of Low Aspect Ratios Wings
,”
Procedia Eng.
,
79
, pp.
76
85
.
15.
Ananda
,
G.
,
Sukumar
,
P.
, and
Selig
,
M.
,
2012
, “
Low-to-Moderate Aspect Ratio Wings Tested at Low Reynolds Numbers
,”
AIAA
Paper No. 2012-3026.
16.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
,
2nd ed.
,
DCW Industries Inc
.,
La Canada, CA
, pp. 1–18.
17.
Cebeci
,
T.
,
Mosinskis
,
G. J.
, and
Smith
,
A. M. O.
,
1972
, “
Calculation of Separation Points in Incompressible Turbulent Flows
,”
J. Aircr.
,
9
(
9
), pp.
618
624
.
18.
Drela
,
M.
, and
Giles
,
M. B.
,
1987
, “
Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils
,”
AIAA J.
,
25
(
10
), pp.
1347
1355
.
19.
Wilcox
,
D. A.
,
1994
, “
Simulation of Transition With a Two-Equation Turbulence Model
,”
AIAA J.
,
32
(
2
), pp.
247
255
.
20.
Abu-Ghannam
,
B. J.
, and
Shaw
,
R.
,
1980
, “
Natural Transition of Boundary Layers—The Effects of Turbulence, Pressure Gradient, and Flow History
,”
J. Mech. Eng. Sci.
,
22
(
5
), pp.
213
228
.
21.
Suzen
,
Y. B.
, and
Huang
,
P. G.
,
2000
, “
Modeling of Flow Transition Using an Intermittency Transport Equation
,”
ASME J. Fluids Eng.
,
122
(
2
), p.
273
.
22.
Suzen
,
Y. B.
,
Huang
,
P. G.
,
Hultgren
,
L. S.
, and
Ashpis
,
D. E.
,
2003
, “
Predictions of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport Equation
,”
ASME J. Turbomach.
,
125
(
3
), p.
455
.
23.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2004
, “
A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation
,”
ASME
Paper No. GT2004-53452.
24.
Langtry
,
R.
, and
Menter
,
F.
,
2005
, “
Transition Modeling for General CFD Applications in Aeronautics
,”
AIAA
Paper No. 2005-522.
25.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2004
, “
A New Model for Boundary Layer Transition Using a Single-Point RANS Approach
,”
ASME J. Turbomach.
,
126
(
1
), pp.
193
202
.
26.
Misaka
,
T.
, and
Obayashi
,
S.
,
2006
, “
Application of Local Correlation-Based Transition Model to Flows Around Wings
,”
AIAA
Paper No. 2006-918.
27.
Suluksna
,
K.
, and
Juntasaro
,
E.
,
2008
, “
Assessment of Intermittency Transport Equations for Modeling Transition in Boundary Layers Subjected to Freestream Turbulence
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
48
61
.
28.
Cutrone
,
L.
,
Palma
,
P. D.
,
Pascazio
,
G.
, and
Napolitano
,
M.
,
2008
, “
Predicting Transition in Two- and Three-Dimensional Separated Flows
,”
Int. J. Heat Fluid Flow
,
29
(
2
), pp.
504
526
.
29.
Genç
,
M. S.
,
Kaynak
,
Ü.
, and
Lock
,
G. D.
,
2009
, “
Flow Over an Aerofoil Without and With a Leading-Edge Slat at a Transitional Reynolds Number
,”
Proc. Inst. Mech. Eng., Part G
,
223
(
3
), pp.
217
231
.
30.
Genç
,
M. S.
,
2010
, “
Numerical Simulation of Flow Over a Thin Aerofoil at a High Reynolds Number Using a Transition Model
,”
Proc. Inst. Mech. Eng., Part C
,
224
(
10
), pp.
2155
2164
.
31.
Genç
,
M. S.
,
Kaynak
,
Ü.
, and
Yapici
,
H.
,
2011
, “
Performance of Transition Model for Predicting Low Aerofoil Flows Without/With Single and Simultaneous Blowing and Suction
,”
Eur. J. Mech.-B
,
30
(
2
), pp.
218
235
.
32.
Samson
,
A.
, and
Sarkar
,
S.
,
2015
, “
Effects of Free-Stream Turbulence on Transition of a Separated Boundary Layer Over the Leading-Edge of a Constant Thickness Airfoil
,”
ASME J. Fluids Eng.
,
138
(
2
), p.
021202
.
33.
Ducoin
,
A.
,
Loiseau
,
J.-C.
, and
Robinet
,
J.-C.
,
2016
, “
Numerical Investigation of the Interaction Between Laminar to Turbulent Transition and the Wake of an Airfoil
,”
Eur. J. Mech.-B
,
57
, pp.
231
248
.
34.
Roberts
,
L. S.
,
Finnis
,
M. V.
, and
Knowles
,
K.
,
2017
, “
Forcing Boundary-Layer Transition on a Single-Element Wing in Ground Effect
,”
ASME J. Fluids Eng.
,
139
(
10
), p.
101205
.
35.
Chen
,
Z. J.
,
Qin
,
N.
, and
Nowakowski
,
A. F.
,
2013
, “
Three-Dimensional Laminar-Separation Bubble on a Cambered Thin Wing at Low Reynolds Numbers
,”
J. Aircr.
,
50
(
1
), pp.
152
163
.
36.
Chen
,
P.-W.
,
Bai
,
C.-J.
, and
Wang
,
W.-C.
,
2016
, “
Experimental and Numerical Studies of Low Aspect Ratio Wing at Critical Reynolds Number
,”
Eur. J. Mech.-B
,
59
, pp.
161
168
.
37.
Karasu
,
İ.
,
Genç
,
M. S.
, and
Açıkel
,
H. H.
,
2013
, “
Numerical Study on Low Reynolds Number Flows Over an Aerofoil
,”
J. Appl. Mech. Eng.
,
2
(
5
), pp. 131–138.https://www.omicsonline.org/open-access/numerical-study-on-low-reynolds-number-flows-over-an-aerofoil-2168-9873.1000131.php?aid=21185
38.
Demir
,
H.
,
Özden
,
M.
,
Genç
,
M. S.
, and
Çağdaş
,
M.
,
2016
, “
Numerical Investigation of Flow on NACA4412 Aerofoil With Different Aspect Ratios
,”
EPJ Web Conf.
,
114
, p.
02016
.
39.
Genç
,
M. S.
,
Özkan
,
G.
,
Açikel
,
H. H.
,
Kırış
,
M. S.
, and
Yıldız
,
R.
,
2016
, “
Effect of Tip Vortices on Flow Over NACA4412 Aerofoil With Different Aspect Ratios
,”
EPJ Web Conf.
,
114
, p.
02027
.
40.
Genç
,
M. S.
,
Özkan
,
G.
,
Özden
,
M.
,
Kırış
,
M. S.
, and
Yıldız
,
R.
,
2018
, “
Interaction of Tip Vortex and Laminar Separation Bubble Over Wings With Different Aspect Ratios Under Low Reynolds Numbers
,”
Proc. Inst. Mech. Eng., Part C
(in press).
41.
Genç
,
M. S.
,
Karasu
,
I.
, and
Açıkel
,
H. H.
,
2012
, “
An Experimental Study on Aerodynamics of NACA2415 Aerofoil at Low Re Numbers
,”
Exp. Therm. Fluid Sci.
,
39
, pp.
252
264
.
42.
Sheng
,
J.
,
Meng
,
H.
, and
Fox
,
R.
,
2000
, “
A Large Eddy PIV Method for Turbulence Dissipation Rate Estimation
,”
Chem. Eng. Sci.
,
55
(
20
), pp.
4423
4434
.
43.
ANSYS
,
2017
, “ANSYS FLUENT (V18.2),”
Ansys Inc
.,
Canonsburg, PA
.
You do not currently have access to this content.