This work presents an application of the partially averaged Navier–Stokes (PANS) equations for an external vehicle flow. In particular, the flow around a generic truck cabin is simulated. The PANS method is first validated against experiments and resolved large eddy simulation (LES) on two static cases. As a consequence, PANS is used to study the effect of an active flow control (AFC) on a dynamic oscillating configuration. The oscillation of the model represents a more realistic ground vehicle flow, where gusts (of different natures) define the unsteadiness of the incoming flow. In the numerical study, the model is forced to oscillate with a yaw angle 10 deg > β > –10 deg and a nondimensional frequency St = fW/Uinf = 0.1. The effect of the periodic motion of the model is compared with the quasi-static flow condition. At a later stage, the dynamic configuration is actuated by means of a synthetic jet boundary condition. Overall, the effect of the actuation is beneficial. The actuation of the AFC decreases drag, stabilizes the flow, and reduces the size of the side recirculation bubble.

References

References
1.
Girimaji
,
S. S.
,
Jeong
,
E.
, and
Srinivasan
,
R.
,
2006
, “
Partially Averaged Navier–Stokes Method for Turbulence: Fixed Point Analysis and Comparison With Unsteady Partially Averaged Navier–Stokes
,”
ASME J. Appl. Mech.
,
73
(
3
), pp.
422
429
.
2.
Basara
,
B.
,
Krajnovic
,
S.
,
Girimaji
,
S.
, and
Pavlovic
,
Z.
,
2011
, “
Near-Wall Formulation of the Partially Averaged Navier Stokes Turbulence Model
,”
AIAA J.
,
49
(
12
), pp.
2627
2636
.
3.
Jeong
,
E.
, and
Girimaji
,
S. S.
,
2010
, “
Partially Averaged Navier–Stokes (PANS) Method for Turbulence Simulations-Flow past a Square Cylinder
,”
ASME J. Fluids Eng.
,
132
(
12
), p.
121203
.
4.
Lakshmipathy
,
S.
, and
Girimaji
,
S. S.
,
2010
, “
Partially Averaged Navier–Stokes (PANS) Method for Turbulence Simulations: Flow past a Square Cylinder
,”
ASME J. Fluids Eng.
,
132
(
12
), p.
121202
.
5.
Mirzaei
,
M.
,
Krajnović
,
S.
, and
Basara
,
B.
,
2015
, “
Partially-Averaged Navier–Stokes Simulations of Flows around Two Different Ahmed Bodies
,”
Comput. Fluids
,
117
, pp.
273
286
.
6.
Krajnović
,
S.
,
Minelli
,
G.
, and
Basara
,
B.
,
2016
, “
Partially-Averaged Navier-Stokes Simulations of Two Bluff Body Flows
,”
Appl. Math. Comput.
,
272
, pp.
692
706
.
7.
Krajnović
,
S.
,
Minelli
,
G.
, and
Basara
,
B.
,
2016
, “
Partially-Averaged Navier-Stokes Simulations of Flows around Generic Vehicle at Yaw
,”
SAE
Paper 2016-01-1586.
8.
Krajnović
,
S.
,
Lárusson
,
R.
, and
Basara
,
B.
,
2012
, “
Superiority of PANS Compared to LES in Predicting a Rudimentary Landing Gear Flow With Affordable Meshes
,”
Int. J. Heat Fluid Flow
,
37
, pp.
109
122
.
9.
Ranjan
,
P.
, and
Dewan
,
A.
,
2015
, “
Partially Averaged Navier Stokes Simulation of Turbulent Heat Transfer From a Square Cylinder
,”
Int. J. Heat Mass Transfer
,
89
, pp.
251
266
.
10.
Ranjan
,
P.
, and
Dewan
,
A.
,
2016
, “
Effect of Side Ratio on Fluid Flow and Heat Transfer From Rectangular Cylinders Using the PANS Method
,”
Int. J. Heat Fluid Flow
,
61
, pp.
309
322
.
11.
Han
,
X.
,
Krajnović
,
S.
, and
Basara
,
B.
,
2013
, “
Study of Active Flow Control for a Simplified Vehicle Model Using the PANS Method
,”
Int. J. Heat Fluid Flow
,
42
, pp.
139
150
.
12.
Minelli
,
G.
,
Adi Hartono
,
E.
,
Chernoray
,
V.
,
Hjelm
,
L.
,
Krajnović
,
S.
, and
Basara
,
B.
,
2017
, “
Validation of PANS and Active Flow Control for a Generic Truck Cabin
,”
J. Wind Eng. Ind. Aerodyn.
,
171
, pp.
148
160
.
13.
Jakirlic
,
S.
,
Kutej
,
L.
,
Unterlechner
,
P.
, and
Tropea
,
C.
,
2017
, “
Critical Assessment of Some Popular Scale-Resolving Turbulence Models for Vehicle Aerodynamics
,”
SAE
Paper No. 2017–01–1532.
14.
Jakirlic
,
S.
,
2018
, “
Scale-Resolving Simulation of an ‘on-Road’ Overtaking Maneuver Involving Model Vehicles
,”
SAE
Paper No. 2018-01-0706.
15.
Schuetz
,
T. C.
,
2015
,
Aerodynamics of Road Vehicles
, 5th ed.,
SAE International
, Warrendale, PA.
16.
Cho
,
M.
,
Choi
,
S.
, and
Choi
,
H.
,
2016
, “
Control of Flow Separation in a Turbulent Boundary Layer Using Time-Periodic Forcing
,”
ASME J. Fluids Eng.
,
138
(
10
), p.
101204
.
17.
Gad-el Hak
,
M.
,
Pollard
,
A.
, and
Bonnet
,
J. P.
,
1998
, “
Flow Control: Fundamentals and Practices
,”
Flow Control: Fundamentals and Practices
, Vol.
53
,
Springer-Verlag
, Berlin.
18.
Glezer
,
A.
,
Amitay
,
M.
, and
Honohan
,
A. M.
,
2005
, “
Aspects of Low- and High-Frequency Actuation for Aerodynamic Flow Control
,”
AIAA J.
,
43
(
7
), pp.
1501
1511
.
19.
Woo
,
G. T. K.
, and
Glezer
,
A.
,
2010
, “
Transitory Control of Dynamic Stall on a Pitching Airfoil
,”
Numer. Fluid Mech. Multidiscip. Des.
,
108
, pp.
3
18
.
20.
Yen
,
J.
, and
Ahmed
,
N. A.
,
2012
, “
Parametric Study of Dynamic Stall Flow Field With Synthetic Jet Actuation
,”
ASME J. Fluids Eng.
,
134
(
7
), p.
071106
.
21.
Gad
,
L.
, and
Avraham
,
S.
,
2014
, “
Flow Control Applied to the Front Rounded Edge of a Bluff Body
,”
Int. J. Flow Control
,
6
(
1
), pp.
21
42
.
22.
Lubinsky
,
G.
, and
Seifert
,
A.
,
2014
, “
Suction and Oscillatory Blowing Applied to the Rounded Front Edges of a Square Prism BT
,”
International Conference on Instability and Control of Massively Separated Flows, Prato, Italy
, Sept. 4–6, 2013, pp.
157
162
.
23.
Seifert
,
A.
,
Dayan
,
I.
,
Horrell
,
C.
,
Grossmann
,
J.
, and
Smith
,
A.
,
2016
,
Heavy Trucks Fuel Savings Using the SaOB Actuator BT—The Aerodynamics of Heavy Vehicles—Part III: Trucks, Buses and Trains
,
Springer International Publishing
,
Cham, Switzerland
, pp.
377
390
.
24.
Vernet
,
J. A.
,
Örlü
,
R.
, and
Alfredsson
,
P. H.
,
2015
, “
Separation Control by means of Plasma Actuation on a Half Cylinder Approached by a Turbulent Boundary Layer
,”
J. Wind Eng. Ind. Aerodyn.
,
145
, pp.
318
326
.
25.
Michelis
,
T.
, and
Kotsonis
,
M.
,
2015
, “
Flow Control on a Transport Truck Side Mirror Using Plasma Actuators
,”
ASME J. Fluids Eng.
,
137
(
11
), p.
111103
.
26.
Minelli
,
G.
,
Krajnović
,
S.
,
Basara
,
B.
, and
Noack
,
B. R.
,
2016
, “
Numerical Investigation of Active Flow Control around a Generic Truck A-Pillar
,”
Flow, Turbul. Combust.
,
97
(
4
), pp.
1235
1254
.
27.
Minelli
,
G.
,
Hartono
,
E. A.
,
Chernoray
,
V.
,
Hjelm
,
L.
, and
Krajnović
,
S.
,
2017
, “
Aerodynamic Flow Control for a Generic Truck Cabin Using Synthetic Jets
,”
J. Wind Eng. Ind. Aerodyn.
,
168
, pp.
81
90
.
28.
Garry
,
K. P.
, and
Cooper
,
K. R.
,
1986
, “
Comparison of Quasi-Static and Dynamic Wind Tunnel Measurements on Simplified Tractor-Trailer Models
,”
J. Wind Eng. Ind. Aerodyn.
,
22
(
2–3
), pp.
185
194
.
29.
Krajnović
,
S.
,
Bengtsson
,
A.
, and
Basara
,
B.
,
2011
, “
Large Eddy Simulation Investigation of the Hysteresis Effects in the Flow around an Oscillating Ground Vehicle
,”
ASME J. Fluids Eng.
,
133
(
12
), p.
121103
.
30.
Guilmineau
,
E.
, and
Chometon
,
F.
,
2008
, “
Numerical and Experimental Analysis of Unsteady Separated Flow Behind an Oscillating Car Model
,”
SAE Int. J. Passenger Cars Mech. Syst.
,
1
(
1
), pp.
646
657
.
31.
Watkins
,
S.
, and
Saunders
,
J. W.
,
1995
, “
Turbulence Experienced by Road Vehicles Under Normal Driving Conditions
,”
SAE
Paper No. 1995-02-01.
32.
Wordley
,
.
, and
Saunders
,
J.
,
2008
, “
On-Road Turbulence
,”
SAE Int. J. Passenger Cars Mech. Syst.
,
1
(
1
), pp.
341
360
.
33.
Wordley
,
S.
, and
Saunders
,
J.
,
2009
, “
On-Road Turbulence—Part 2
,”
SAE Int. J. Passenger Cars Mech. Syst.
,
2
(
1
), pp.
111
137
.
34.
AVL
,
2014
, “
Fire Manual v2014
,” AVL LIST GmbH, Graz, Austria.
35.
Pope
,
S. B.
,
2001
,
Turbulent Flows
, Cambridge University Press, Cambridge, UK.
36.
Piomelli
,
U.
, and
Chasnov
,
J.
,
1996
,
Large-Eddy Simulations: Theory and Applications
(ERCOFTAC Series), M. Hallbäck, D. S. Henningson, A. V. Johansson, P. H. Alfredsson, eds., Vol. 2. Springer, Dordrecht, the Netherlands.
37.
Przulj
,
V.
, and
Basara
,
B.
,
2001
, “
Bounded Convection Schemes for Unstructured Grids
,”
AIAA
Paper No. 2001-2593.
38.
Sweby
,
P. K.
,
1984
, “
High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws
,”
SIAM J. Numer. Anal.
,
21
(
5
), pp.
995
1011
.
39.
Harten
,
A.
,
1997
, “
High Resolution Schemes for Hyperbolic Conservation Laws
,”
J. Comput. Phys.
,
135
(
2
), pp.
260
278
.
40.
Girimaji
,
S. S.
,
2006
, “
Partially-Averaged Navier–Stokes Model for Turbulence: A Reynolds-Averaged Navier–Stokes to Direct Numerical Simulation Bridging Method
,”
ASME J. Appl. Mech.
,
73
(
3
), pp.
413
421
.
41.
Germano
,
M.
,
1992
, “
Turbulence: The Filtering Approach
,”
J. Fluid Mech.
,
238
(
1
), pp.
325
336
.
42.
Ma
,
J. M.
,
Peng
,
S. H.
,
Davidson
,
L.
, and
Wang
,
F. J.
,
2011
, “
A Low Reynolds Number Variant of Partially-Averaged Navier–Stokes Model for Turbulence
,”
Int. J. Heat Fluid Flow
,
32
(
3
), pp.
652
669
.
43.
Basara
,
B.
,
Krajnović
,
S.
, and
Girimaji
,
S.
,
2010
, “
PANS Methodology Applied to Elliptic-Relaxation Based Eddy Viscosity Transport Model
,”
Turbulence and Interactions
,
Springer
,
Berlin
, pp.
63
69
.
44.
Girimaji
,
S.
, and
Abdol-Hamid
,
K.
,
2005
, “
Partially Averaged Navier-Stokes Model for Turbulence: Implementation and Validation
,”
AIAA
Paper 2005-502.
45.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
165
.
46.
Krajnović
,
S.
,
2009
, “
Large Eddy Simulation of Flows Around Ground Vehicles and Other Bluff Bodies
,”
Philos. Trans. Ser. A
, ,
367
(
1899
), pp.
2917
2930
.
You do not currently have access to this content.