Preparation of large-scale homogeneous solutions of drag reducing polymers requires an appropriate mixing procedure to ensure full disentanglement of the polymer chains without chain scission due to over-mixing. The latter is known as mechanical degradation and reduces the performance of drag reducing polymers. The dominant large-scale mixing parameters including time, impeller type, impeller speed, and impeller-to-tank diameter ratio are investigated to obtain a recipe for maximum mixing with minimum polymer degradation. Three water-based solutions of 100 ppm Superfloc A-110 (flexible structure), Magnafloc 5250 (flexible structure), and Xanthan Gum (XG) (rigid structure) are considered. The performance of the mixing parameters for each polymer is evaluated based on the solution viscosity in comparison with the highest viscosity (i.e., optimum mixing) obtained by 2 h of low-shear mixing of a small-scale polymer solution using a magnetic stirrer. The results demonstrate that optimum large-scale mixing is obtained at mean and maximum shear rates of ∼17 s−1 and ∼930 s−1, respectively, after 2–2.5 h of mixing for each of the polymers. This shear rate is obtained here using a three-blade marine impeller operating at 75 rpm and at impeller-to-tank diameter ratio of 0.5. The resulting polymer solution has the highest viscosity, which is an indication of minimal degradation while achieving complete mixing. It is also confirmed that chemical degradation due to contact with a stainless steel impeller is negligible.

References

References
1.
Interthal
,
W.
, and
Wilski
,
H.
,
1985
, “
Drag Reduction Experiments With Very Large Pipes
,”
Polym. Sci.
,
263
(
3
), pp.
217
229
.
2.
Toms
,
B. A.
,
1948
, “
Some Observations on the Flow of Linear Polymer Solutions Through Straight Tubes at Large Reynolds Numbers
,”
Proc. Int. Congr. Rheol.
,
2
, pp.
135
141
.
3.
White
,
C. M.
, and
Mungal
,
M. G.
,
2008
, “
Mechanics and Prediction of Turbulent Drag Reduction With Polymer Additives
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
235
256
.
4.
Den Toonder
,
J. M. J.
,
Hulsen
,
M. A.
,
Kuiken
,
G. D. C.
, and
Nieuwstadt
,
F. T. M.
,
1997
, “
Drag Reduction by Polymer Additives in a Turbulent Pipe Flow: Numerical and Laboratory Experiments
,”
J. Fluid Mech.
,
337
, pp.
193
231
.
5.
Shupe
,
R. D.
,
1981
, “
Chemical Stability of Polyacrylamide Polymers
,”
J. Pet. Technol.
,
33
(
8
), pp.
1
513
.
6.
Seright
,
R. S.
, and
Skjevrak
,
I.
,
2015
, “
Effect of Dissolved Iron and Oxygen on Stability of HPAM Polymers
,”
SPE Improved Oil Recovery Symposium
, Tulsa, OK, Apr. 12–16,
SPE
Paper No. SPE-169030-MS.
7.
McComb
,
W. D.
, and
Rabie
,
L. H.
,
1982
, “
Local Drag Reduction Due to Injection of Polymer Solutions Into Turbulent Flow in a Pipe—Part I: Dependence on Local Polymer Concentration
,”
AIChE J.
,
28
(
4
), pp.
547
557
.
8.
Fore
,
E. S. C.
,
Szwalek
,
J.
, and
Sirviente
,
I.
,
2005
, “
The Effects of Polymer Solution Preparation and Injection on Drag Reduction
,”
ASME J. Fluid Eng.
,
127
(
3
), pp.
536
548
.
9.
Den Toonder
,
J. M. J.
,
Draad
,
A. A.
,
Kuiken
,
G. D. C.
, and
Nieuwstadt
,
F. T. M.
,
1995
, “
Degradation Effects of Dilute Polymer Solutions on Turbulent Drag Reduction in Pipe Flows
,”
Appl. Sci. Res.
,
55
(
1
), pp.
63
82
.
10.
Vanapalli
,
S. A.
,
Ceccio
,
S. L.
, and
Solomon
,
M. J.
,
2006
, “
Universal Scaling for Polymer Chain Scission in Turbulence
,”
Proc. Natl. Acad. Sci.
,
103
(
45
), pp.
16660
16665
.
11.
Zakin
,
J. L.
, and
Ge
,
W.
,
2010
,
Polymer and Surfactant Drag Reduction in Turbulent Flows
,
Wiley
,
New York
, p.
776
.
12.
Grandbois
,
M.
,
Beyer
,
M.
,
Rief
,
M.
,
Clausen-Schaumann
,
H.
, and
Gaub
,
H. E.
,
1999
, “
How Strong is a Covalent Bond?
,”
Science
,
283
(
5408
), pp.
1727
1730
.
13.
Vanapalli
,
S. A.
,
Islam
,
M. T.
, and
Solomon
,
M. J.
,
2005
, “
Scission-Induced Bounds on Maximum Polymer Drag Reduction in Turbulent Flow
,”
Phys. Fluids
,
17
(
9
), p.
095108
.
14.
Campolo
,
M.
,
Simeoni
,
M.
,
Lapasin
,
R.
, and
Soldati
,
A.
,
2015
, “
Turbulent Drag Reduction by Biopolymers in Large Scale Pipes
,”
ASME J. Fluid Eng.
,
137
(
4
), pp.
1
11
.
15.
Escudier
,
M.
,
Presti
,
F.
, and
Smith
,
S.
,
1999
, “
Drag Reduction in the Turbulent Pipe Flow of Polymers
,”
J. Fluid Mech.
,
81
(
3
), pp.
197
213
.
16.
Gasljevic
,
K.
,
Aguilar
,
G.
, and
Matthys
,
E. F.
,
1999
, “
An Improved Diameter Scaling Correlation for Turbulent Flow of Drag-Reducing Polymer Solutions
,”
J. Non-Newtonian Fluid Mech.
,
84
(
2–3
), pp.
131
148
.
17.
Warholic
,
M. D.
,
Massah
,
H.
, and
Hanratty
,
T. J.
,
1999
, “
Influence of Drag-Reducing Polymers on Turbulence: Effects of Reynolds Number, Concentration and Mixing
,”
Exp. Fluids
,
27
(
5
), pp.
461
472
.
18.
Warholic
,
M. D.
,
Heist
,
D. K.
,
Katcher
,
M.
, and
Hanratty
,
T. J.
,
2001
, “
A Study With Particle-Image Velocimetry of the Influence of Drag-Reducing Polymers on the Structure of Turbulence
,”
Exp. Fluids
,
31
(
5
), pp.
474
483
.
19.
Ptasinski
,
P. K.
,
Nieuwstadt
,
F. T. M.
,
Van Den Brule
,
B. H. A. A.
, and
Hulsen
,
M. A.
,
2001
, “
Experiments in Turbulent Pipe Flow With Polymer Additives at Maximum Drag Reduction
,”
Turbul. Combust.
,
66
(
2
), pp.
159
182
.
20.
21.
Japper-Jaafar
,
A.
,
Escudier
,
M. P.
, and
Poole
,
R. J.
,
2009
, “
Turbulent Pipe Flow of a Drag-Reducing Rigid ‘Rod-Like’ Polymer Solution
,”
J. Non-Newtonian Fluid Mech.
,
161
(
1–3
), pp.
86
93
.
22.
Pereira
,
A. S.
,
Andrade
,
R. M.
, and
Soares
,
E. J.
,
2013
, “
Drag Reduction Induced by Flexible and Rigid Molecules in a Turbulent Flow Into a Rotating Cylindrical Double Gap Device: Comparison Between Poly (Ethylene Oxide), Polyacrylamide, and Xanthan Gum
,”
J. Non-Newtonian Fluid Mech.
,
202
, pp.
72
87
.
23.
Gillissen
,
J. J. J.
,
2008
, “
Polymer Flexibility and Turbulent Drag Reduction
,”
Phys. Rev. E
,
78
(
4
), p.
046311
.
24.
Andrade
,
R. M.
,
Pereira
,
A. S.
, and
Soares
,
E. J.
,
2015
, “
Drag Reduction in Synthetic Seawater by Flexible and Rigid Polymer Addition Into a Rotating Cylindrical Double Gap Device
,”
ASME J. Fluid Eng.
,
138
(
2
), pp.
1
10
.
25.
Dubief
,
Y.
,
White
,
C. M.
,
Terrapon
,
V. E.
,
Shaqfeh
,
E. S.
,
Moin
,
P.
, and
Lele
,
S. K.
,
2004
, “
On the Coherent Drag-Reducing and Turbulence-Enhancing Behaviour of Polymers in Wall Flows
,”
J. Fluid Mech.
,
514
, pp.
271
280
.
26.
Nienow
,
A. W.
,
1992
, “
The Suspension of Solid Particles
,”
Mixing in the Process Industries
, 2nd ed., N. Harnby, M. F. Edwards, and A. W. Nienow, eds., Butterworth-Heinemann, London, pp.
364
393
.
27.
Lu
,
J.
,
Peng
,
B.
,
Li
,
M.
,
Lin
,
M.
, and
Dong
,
Z.
,
2010
, “
Dispersion Polymerization of Anionic Polyacrylamide in an Aqueous Salt Medium
,”
Pet. Sci.
,
7
(
3
), pp.
410
415
.
28.
Özcan-Taşkin
,
G.
, and
Wei
,
H.
,
2003
, “
The Effect of Impeller-to-Tank Diameter Ratio on Draw Down of Solids
,”
Chem. Eng. Sci.
,
58
(
10
), pp.
2011
2022
.
29.
Winardi
,
S.
, and
Nagase
,
Y.
,
1991
, “
Unstable Phenomenon of Flow in a Mixing Vessel With a Marine Propeller
,”
J. Chem. Eng. Jpn.
,
24
(
2
), pp.
243
249
.
30.
Bakker
,
A.
,
Fasano
,
J. B.
, and
Myers
,
K. J.
,
1994
, “
Effects of Flow Pattern on the Solids Distribution in a Stirred Tank
,”
8th European Conference on Mixing
, Cambridge, UK, Sept. 21–23, pp.
1
7
.http://www.bakker.org/cfm/publications/SolSusp1994.pdf
31.
Hoyt
,
J. W.
,
1971
, “
Drag‐Reduction Effectiveness of Polymer Solutions in the Turbulent‐Flow Rheometer: A Catalog
,”
J. Polym. Sci. Part B: Polym. Lett.
,
9
(
11
), pp.
851
862
.
32.
Khadom
,
A. A.
, and
Abdul-Hadi
,
A. A.
,
2014
, “
Performance of Polyacrylamide as Drag Reduction Polymer of Crude Petroleum Flow
,”
Ain Shams Eng. J.
,
5
(
3
), pp.
861
865
.
33.
Bhambri
,
P.
,
2016
, “
Drag Reduction Using Additives in a Taylor-Couette Flow
,”
M.S. dissertation
, University of Alberta, Edmonton, AB, Canada.https://era.library.ualberta.ca/items/ee877818-5093-4389-aec4-e511169f6d1b
34.
Zhang
,
J.
,
Huguenard
,
C.
,
Scarnecchia
,
C.
,
Menghetti
,
R.
, and
Buffle
,
J.
,
1999
, “
Stabilization and Destabilization of Hematite Suspensions by Neutral and Anionic Polyacrylamide
,”
Colloids Surf. A: Physicochem. Eng. Aspects
,
151
(
1–2
), pp.
49
63
.
35.
Broseta
,
D.
,
Medjahed
,
F.
,
Lecourtier
,
J.
, and
Robin
,
M.
,
1995
, “
Polymer Adsorption/Retention in Porous Media: Effects of Core Wettability on Residual Oil
,”
SPE Adv. Technol. Ser.
,
3
(
1
), pp.
103
112
.
36.
Pefferkorn
,
E.
,
Nabzar
,
L.
, and
Varoqui
,
R.
,
1987
, “
Polyacrylamide Na-Kaolinite Interactions: Effect of Electrolyte Concentration on Polymer Adsorption
,”
Colloid Polym. Sci.
,
265
(
10
), pp.
889
896
.
37.
Coviello
,
T.
,
Kajiwara
,
K.
,
Burchard
,
W.
,
Dentini
,
M.
, and
Crescenzi
,
V.
,
1986
, “
Solution Properties of Xanthan. 1. Dynamic and Static Light Scattering From Native and Modified Xanthans in Dilute Solutions
,”
Macromolecules
,
19
(
11
), pp.
2826
2831
.
38.
Ross‐Murphy
,
S. B.
,
1995
, “
Structure–Property Relationships in Food Biopolymer Gels and Solutions
,”
J. Rheol.
,
39
(
6
), pp.
1451
1463
.
39.
Bewersdorff
,
H. W.
, and
Singh
,
R. P.
,
1988
, “
Rheological and Drag Reduction Characteristics of Xanthan Gum Solutions
,”
Rheol. Acta
,
27
(
6
), pp.
617
627
.
40.
Nakken
,
T.
,
Tande
,
M.
, and
Nyström
,
B.
,
2004
, “
Effects of Molar Mass, Concentration and Thermodynamic Conditions on Polymer-Induced Flow Drag Reduction
,”
Eur. Polymer J.
,
40
(
1
), pp.
181
186
.
41.
Walker
,
D. T.
, and
Tiederman
,
W. G.
,
1990
, “
Turbulent Structure in a Channel Flow With Polymer Injection at the Wall
,”
J. Fluid Mech.
,
218
(
1
), pp.
377
403
.
42.
Pinarbasi
,
A.
, and
Liakopoulos
,
A.
,
1995
, “
Stability of Two-Layer Poiseuille Flow of Carreau-Yasuda and Bingham-like Fluids
,”
J. Non-Newtonian Fluid Mech.
,
57
(
2–3
), pp.
227
241
.
43.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
,
1987
,
Dynamics of Polymeric Liquids
(Fluid Mechanics, Vol. 1), Wiley, New York.
44.
Sánchez Pérez
,
J. A.
,
Rodríguez Porcel
,
E. M.
,
Casas López
,
J. L.
,
Fernández Sevilla
,
J. M.
, and
Chisti
,
Y.
,
2006
, “
Shear Rate in Stirred Tank and Bubble Column Bioreactors
,”
Chem. Eng. J.
,
124
(
1–3
), pp.
1
5
.
45.
Wichterle
,
K.
,
Kadlec
,
M.
,
ŽÁK
,
L.
, and
Mitschka
,
P.
,
1984
, “
Shear Rates on Turbine Impeller Blades
,”
Chem. Eng. Commun.
,
26
(
1–3
), pp.
25
32
.
You do not currently have access to this content.