The aim of this study is to examine the effects of Reynolds number (Re = 6000–20,000) on mean and turbulent quantities as well as turbulent structures in the near and intermediate regions of equilateral triangular and round sharp contraction jets. The results show shorter potential core length, faster growth of turbulence intensity, and faster diffusion of turbulent structures to the centerline of the triangular jets, implying enhanced mixing in the near field of these jets. On the other hand, the velocity decay and jet spread rates are higher in the round jets. The obtained data in the round jets show that the jet at Re = 6000 has the most effective mixing, while an increase in Reynolds number reduces the mixing performance. In the triangular jets, however, no Reynolds number effects were observed on the measured quantities including the length of the potential core, the decay and spread rates, the axis-switching locations, and the value of the Reynolds number. In addition, the asymptotic values of the relative turbulence intensities on the jet centerline are almost independent of the Reynolds number and geometry. The ratios of transverse and spanwise Reynolds stresses are unity except close to the jet exit where the flow pattern in the major plane of the triangular jet deflects toward the flat side. Proper orthogonal decomposition (POD) analysis revealed that turbulent structures in minor and major planes have identical fractional kinetic energy. The integral length scales increased linearly with the streamwise distance with identical slope for all the test cases.

References

References
1.
Deo
,
R. C.
,
Mi
,
J.
, and
Nathan
,
G. J.
,
2008
, “
The Influence of Reynolds Number on a Plane Jet
,”
Phys. Fluids
,
20
(
7
), p. 075108.
2.
Namer
,
I.
, and
Ötügen
,
M. V.
,
1988
, “
Velocity Measurements in a Plane Turbulent Air Jet at Moderate Reynolds Numbers
,”
Exp. Fluids
,
6
(
6
), pp.
387
399
.
3.
Mi
,
J.
,
Xu
,
M.
, and
Zhou
,
T.
,
2013
, “
Reynolds Number Influence on Statistical Behaviors of Turbulence in a Circular Free Jet
,”
Phys. Fluids
,
25
(
7
), p. 075101.
4.
Xu
,
M.
,
Pollard
,
A.
,
Mi
,
J.
,
Secretain
,
F.
, and
Sadeghi
,
H.
,
2013
, “
Effects of Reynolds Number on Some Properties of a Turbulent Jet From a Long Square Pipe
,”
Phys. Fluids
,
25
(
3
), p. 035102.
5.
Ghasemi
,
A.
,
Roussinova
,
V.
,
Balachandar
,
R.
, and
Barron
,
R. M.
,
2015
, “
Reynolds Number Effects in the Near-Field of a Turbulent Square Jet
,”
Exp. Therm. Fluid Sci.
,
61
, pp.
249
258
.
6.
Aleyasin
,
S. S.
,
Fathi
,
N.
,
Tachie
,
M. F.
,
Vorobieff
,
P.
, and
Koupriyanov
,
M.
,
2017
, “
Experimental-Numerical Analysis of Turbulent Incompressible Isothermal Jets
,”
ASME
Paper No. FEDSM2017-69418.
7.
Hussain
,
F.
, and
Husain
,
H. S.
,
1989
, “
Elliptic Jets—Part 1: Characteristics of Unexcited and Excited Jets
,”
J. Fluid Mech.
,
208
(
1
), pp.
257
320
.
8.
Kim
,
J.
, and
Choi
,
H.
,
2009
, “
Large Eddy Simulation of a Circular Jet: Effect of Inflow Conditions on the Near Field
,”
J. Fluid Mech.
,
620
, pp.
383
411
.
9.
Quinn
,
W. R.
,
2006
, “
Upstream Nozzle Shaping Effects on Near Field Flow in round Turbulent Free Jets
,”
Eur. J. Mech. B/Fluids
,
25
(
3
), pp.
279
301
.
10.
Mi
,
J.
,
Nathan
,
G. J.
, and
Nobes
,
D. S.
,
2001
, “
Mixing Characteristics of Axisymmetric Free Jets From a Contoured Nozzle, an Orifice Plate and a Pipe
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
878
883
.
11.
Xu
,
G.
, and
Antonia
,
R. A.
,
2002
, “
Effect of Initial Conditions on the Temperature Field of a Turbulent round Free Jet
,”
Int. Commun. Heat Mass Transfer
,
29
(
8
), pp.
1057
1068
.
12.
Keskinen
,
K.
,
Kaario
,
O.
,
Nuutinen
,
M.
,
Vuorinen
,
V.
,
Künsch
,
Z.
,
Ola
,
L.
, and
Larmi
,
M.
,
2016
, “
Mixture Formation in a Direct Injection Gas Engine: Numerical Study on Nozzle Type, Injection Pressure and Injection Timing Effects
,”
Energy
,
94
, pp.
542
556
.
13.
Mi
,
J.
, and
Nathan
,
G. J.
,
2010
, “
Statistical Properties of Turbulent Free Jets Issuing From Nine Differently-Shaped Nozzles
,”
Flow, Turbul. Combust
,
84
(
4
), pp.
583
606
.
14.
Hashiehbaf
,
A.
, and
Romano
,
G. P.
,
2013
, “
Particle Image Velocimetry Investigation on Mixing Enhancement of Non-Circular Sharp Edge Nozzles
,”
Int. J. Heat Fluid Flow
,
44
, pp.
208
221
.
15.
Quinn
,
W. R.
,
2007
, “
Experimental Study of the Near Field and Transition Region of a Free Jet Issuing From a Sharp-Edged Elliptic Orifice Plate
,”
Eur. J. Mech. B/Fluids
,
26
(
4
), pp.
583
614
.
16.
Quinn
,
W. R.
,
2005
, “
Measurements in the Near Flow Field of an Isosceles Triangular Turbulent Free Jet
,”
Exp. Fluids
,
39
(
1
), pp.
111
126
.
17.
Tay
,
G. F. K.
,
Mishra
,
A.
,
Kuhn
,
D. C. S.
, and
Tachie
,
M. F.
,
2017
, “
Free Surface Effects on the Statistical Properties of a Submerged Rectangular Jet
,”
Phys. Fluids
,
29
(
2
), p.
025101
.
18.
Aleyasin
,
S. S.
,
Fathi
,
N.
,
Tachie
,
M. F.
, and
Koupriyanov
,
M.
,
2017
, “
Comparison of Turbulent Jets Issuing From Various Sharp Contoured Nozzles
,”
ASME
Paper No. FEDSM2017-69419.
19.
Bogey
,
C.
, and
Bailly
,
C.
,
2006
, “
Large Eddy Simulations of Transitional Round Jets: Influence of the Reynolds Number on Flow Development and Energy Dissipation
,”
Phys. Fluids
,
18
(
6
), p. 065101.
20.
Gutmark
,
E. J.
, and
Grinstein
,
F. F.
,
1999
, “
Flow Control With Noncircular Jets
,”
Annu. Rev. Fluid Mech.
,
31
(
1
), pp.
239
272
.
21.
Aleyasin
,
S. S.
,
Tachie
,
M. F.
, and
Koupriyanov
,
M.
,
2017
, “
PIV Measurements in the Near and Intermediate Field Regions of Jets Issuing From Eight Different Nozzle Geometries
,”
Flow, Turbul. Combust
,
99
(
2
), pp.
329
351
.
22.
Schadow
,
K. C.
,
Gutmark
,
E.
,
Parr
,
D. M.
, and
Wilson
,
K. J.
,
2004
, “
Selective Control of Flow Coherence in Triangular Jets
,”
Exp. Fluids
,
6
(
2
), pp.
129
135
.
23.
Xu
,
M.
,
Zhang
,
J. P.
,
Mi
,
J. C.
,
Nathan
,
G. J.
, and
Kalt
,
P. A. M.
,
2013
, “
PIV Measurements of Turbulent Jets Issuing From Triangular and Circular Orifice Plates
,”
Sci. China Phys., Mech. Astron.
,
56
(
6
), pp.
1176
1186
.
24.
Xu
,
M.-Y.
,
Tong
,
X.-Q.
,
Yue
,
D.-T.
,
Zhang
,
J.-P.
,
Mi
,
J.-C.
,
Nathan
,
G. J.
, and
Kalt
,
P. A. M.
,
2014
, “
Effect of Noncircular Orifice Plates on the Near Flow Field of Turbulent Free Jets
,”
Chin. Phys. B
,
23
(
12
), p. 124703.
25.
Dimotakis
,
P. E.
,
2000
, “
The Mixing Transition in Turbulent Flows
,”
J. Fluid Mech.
,
409
, pp.
69
98
.
26.
Aleyasin
,
S. S.
,
Tachie
,
M. F.
, and
Koupriyanov
,
M.
,
2017
, “
Statistical Properties of Round, Square and Elliptic Jets at Low and Moderate Reynolds Numbers
,”
ASME J. Fluids Eng.
,
139
(
10
), p.
101206
.
27.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures—Part 1: Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.
28.
Meyer
,
E. K.
,
Pedersen
,
J. M.
, and
Ozcan
,
O.
,
2007
, “
A Turbulent Jet in Crossflow Analysed With Proper Orthogonal Decomposition
,”
J. Fluid Mech.
,
583
, pp.
199
227
.
29.
Nyantekyi-Kwakye
,
B.
,
Tachie
,
M. F.
,
Clark
,
S. P.
,
Malenchak
,
J.
, and
Muluye
,
G. Y.
,
2015
, “
Experimental Study of the Flow Structures of 3D Turbulent Offset Jets
,”
J. Hydraul. Res.
,
53
(
6
), pp.
773
786
.
30.
Iyogun
,
C. O.
, and
Birouk
,
M.
,
2009
, “
Effect of Sudden Expansion on Entrainment and Spreading Rates of a Jet Issuing From Asymmetric Nozzles
,”
Flow, Turbul. Combust
,
82
(
3
), pp.
287
315
.
31.
Azad
,
M.
,
Quinn
,
W. R.
, and
Groulx
,
D.
,
2012
, “
Mixing in Turbulent Free Jets Issuing From Isosceles Triangular Orifices With Different Apex Angles
,”
Exp. Therm. Fluid Sci.
,
39
, pp.
237
251
.
You do not currently have access to this content.