Hydraulic turbines are more frequently used for power regulation and thus spend more time providing spinning reserve for electrical grids. Spinning reserve requires the turbine to operate at its synchronous rotation speed, ready to be linked to the grid in what is termed the speed-no-load (SNL) condition. The turbine's runner flow in SNL is characterized by low discharge and high swirl leading to low-frequency high amplitude pressure fluctuations potentially leading to blade damage and more maintenance downtime. For low-head hydraulic turbines operating at SNL, the large pressure fluctuations in the runner are sometimes attributed to rotating stall. Using embedded pressure transducer measurements, mounted on runner blades of a model propeller turbine, and numerical flow simulations, this paper provides an insight into the inception mechanism associated with rotating stall in SNL conditions. The results offer evidence that the rotating stall is in fact associated with an unstable vorticity distribution not associated with the runner blades themselves.

References

References
1.
REN21
,
2016
, “
Renewables 2016 Global Status Report
,” Renewable Energy Policy Network for the 21st Century, Paris, France,
Report
.http://www.ren21.net/wp-content/uploads/2016/05/GSR_2016_Full_Report_lowres.pdf
2.
Seidel
,
U.
,
Mende
,
C.
,
Hübner
,
B.
,
Weber
,
W.
, and
Otto
,
A.
,
2014
, “
Dynamic Loads in Francis Runners and Their Impact on Fatigue Life
,” 27th
IAHR
Symposium on Hydraulics Machinery and Systems
, Montreal, QC, Canada, Sept. 22–26.
3.
Huang
,
X.
,
Chamberland-Lauzon
,
J.
,
Oram
,
C.
,
Klopfer
,
A.
, and
Ruchonnet
,
N.
,
2014
, “
Fatigue Analyses of the Prototype Francis Runners Based on Site Measurements and Simulation
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
, p. 012014.
4.
Hübner
,
B.
,
Weber
,
W.
, and
Seidel
,
U.
,
2016
, “
The Role of Fluid-Structure Interaction for Safety and Lifetime Prediction in Hydraulic Machinery
,” 28th
IAHR
Symposium on Hydraulics Machinery and Systems
, Grenoble, France, July 4–8, pp. 473–481.
5.
Liu
,
X.
,
Luo
,
X.
, and
Wang
,
Z.
,
2016
, “
A Review on Fatigue Damage Mechanism in Hydro Turbines
,”
Renewable Sustainable Energy Rev.
,
54
, pp. 1–14.
6.
Trivedi
,
C.
, and
Cervantes
,
M.
,
2017
, “
Fluid-Structure Interactions in Francis Turbines: A Perspective Review
,”
Renewable Sustainable Energy Rev.
,
68
, pp. 87–101.
7.
Monette
,
C.
,
Marmont
,
H.
,
Chamberland-Lauzon
,
J.
,
Skagerstrand
,
A.
,
Coutu
,
A.
, and
Carlevi
,
J.
,
2016
, “
Cost of Enlarged Operating Zone for an Existing Francis Runner
,” 28th
IAHR
Symposium on Hydraulics Machinery and Systems
, Grenoble, France, July 4–8, pp. 733–742.
8.
Morissette
,
J.-F.
,
Chamberland-Lauzon
,
J.
,
Nennemann
,
B.
,
Monette
,
C.
,
Giroux
,
A.-M.
,
Coutu
,
A.
, and
Nicolle
,
J.
,
2016
, “
Stress Predictions in a Francis Turbine at No-Load Operating Regime
,” 28th
IAHR
Symposium on Hydraulics Machinery and Systems
, Grenoble, France, July 4–8, pp. 713–722.
9.
Côté
,
P.
,
Dumas
,
G.
,
Moisan
,
É.
, and
Boutet-Blais
,
G.
,
2014
, “
Numerical Investigation of the Flow Behavior Into a Francis Runner During Load Rejection
,” 27th
IAHR
Symposium on Hydraulics Machinery and Systems
, Montreal, QC, Canada, Sept. 22–26.
10.
Gauthier
,
J. P.
,
Giroux
,
A. M.
,
Etienne
,
S.
, and
Gosselin
,
F. P.
,
2017
, “
A Numerical Method for the Determination of Flow-Induced Damping in Hydroelectric Turbines
,”
J. Fluids Struct.
,
69
, pp.
341
354
.
11.
Botero
,
F.
,
Hasmatuchi
,
V.
,
Roth
,
S.
, and
Farhat
,
M.
,
2014
, “
Non-Intrusive Detection of Rotating Stall in Pump-Turbines
,”
Mech. Syst. Signal Process.
,
48
(
1–2
), pp.
162
173
.
12.
Nicolle
,
J.
,
Giroux
,
A.-M.
, and
Morissette
,
J.-F.
,
2014
, “
CFD Configurations for Hydraulic Turbine Startup
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
3
), p. 032021.
13.
Deschênes
,
C.
,
Ciocan
,
G. D.
,
De Henau
,
V.
,
Flemming
,
F.
,
Huang
,
J.
,
Koller
,
M.
,
Arzola Naime
,
F.
,
Page
,
M.
,
Qian
,
R.
, and
Vu
,
T.
,
2010
, “
General Overview of the AxialT Project: A Partnership for Low Head Turbine Developments
,” 25th
IAHR
Symposium on Hydraulic Machinery and Systems
, Timisoara, Romania, Sept. 20–24.
14.
Houde
,
S.
,
Fraser
,
R.
,
Ciocan
,
G. D.
, and
Deschênes
,
C.
,
2012
, “
Part 1: Experimental Study of the Pressure Fluctuations on Propeller Turbine Runner Blades During Steady-State Operation
,” 26th
IAHR
Symposium on Hydraulic Machinery and Systems
, Beijing, China, Aug. 19–23.
15.
Houde
,
S.
,
Fraser
,
R.
,
Ciocan
,
G. D.
, and
Deschênes
,
C.
,
2012
, “
Experimental Study of the Pressure Fluctuations on Propeller Turbine Runner Blades—Part 2: Transient Conditions
,” 26th
IAHR
Symposium on Hydraulic Machinery and Systems
, Beijing, China, Aug. 19–23.
16.
Dorfler
,
P.
,
Sick
,
M.
, and
Coutu
,
A.
,
2013
,
Flow Induced Pulsation and Vibration in Hydroelectric Machinery
,
Springer
, London.
17.
Leibovich
,
S.
, and
Stewartson
,
K.
,
1983
, “
A Sufficient Condition for the Instability of Columnar Vortices
,”
J. Fluid Mech.
,
126
(
1
), pp. 335–356.
18.
Mende
,
C.
,
Weber
,
W.
, and
Seidel
,
U.
,
2016
, “
Progress in Load Prediction for Speed-No-Load Operation in Francis Turbines
,” 28th
IAHR
Symposium on Hydraulics Machinery and Systems
, Grenoble, France, July 4–8, pp. 425–432.
19.
Li
,
Z.
,
Huili
,
B.
,
Zhengwei
,
W.
, and
Ze
,
Y.
,
2016
, “
Three-Dimensional Simulation of Unsteady Flows in a Pump-Turbine During Start-Up Transient Up to Speed No-Load Condition in Generating Mode
,”
Proc. Inst. Mech. Eng., Part A
,
230
(
6
), pp. 570–585.
20.
Yang
,
J.
,
Gao
,
L.
,
Wang
,
Z. W.
,
Zhou
,
X. Z.
, and
Xu
,
H. X.
,
2014
, “
The Flow Field Investigations of No Load Conditions in Axial Flow Fixed-Blade Turbine
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
3
), p.
032028
.
21.
Widmer
,
C.
,
Staubli
,
T.
, and
Ledergerber
,
N.
,
2011
, “
Unstable Characteristics and Rotating Stall in Turbine Brake Operation of Pump-Turbines
,”
ASME J. Fluids Eng.
,
133
(
4
), p.
041101
.
22.
Hasmatuchi
,
V.
,
Farhat
,
M.
,
Roth
,
S.
,
Botero
,
F.
, and
Avellan
,
F.
,
2011
, “
Experimental Evidence of Rotating Stall in a Pump-Turbine at Off-Design Conditions in Generating Mode
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
051104
.
23.
Yang
,
X.
,
Hong
,
J.
,
Barone
,
M.
, and
Sotiropoulos
,
F.
,
2016
, “
Coherent Dynamics in the Rotor Tip Shear Layer of Utility-Scale Wind Turbines
,”
J. Fluid Mech.
,
804
, pp.
90
115
.
24.
Brennen
,
C. E.
,
2004
, “
An Internet Book on Fluid Dynamics: Rotating Stall
,” Christopher Earls Brennen, Pasadena, CA, accessed May 4, 2018, http://brennen.caltech.edu/fluidbook/Fluidmachinery/Pumps/PumpVibration/rotatingstall.pdf
25.
Paduano
,
J. D.
,
Greitzer
,
E. M.
, and
Epstein
,
A. J.
,
2001
, “
Compression System Stability and Active Control
,”
Annu. Rev. Fluid Mech.
,
33
(
1
), pp.
491
517
.
26.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
051007
.
27.
Yamada
,
K.
,
Hiroaki
,
K.
,
Iwakiri
,
K.
,
Furukawa
,
M.
, and
Gunjishima
,
S.
,
2013
, “
An Explanation for Flow Features of Spike-Type Stall Inception in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
135
(
2
), p.
021023
.
28.
Nishioka
,
T.
,
2013
, “
Inception Mechanism and Suppression of Rotating Stall in an Axial-Flow Fan
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
52
(
1
), p. 012002.
29.
Pulpitel
,
L.
,
Skotak
,
A.
, and
Koutnik
,
S.
,
1996
, “
Vortices Rotating in the Vaneless Space of a Kaplan Turbine Operating Under Off-Cam High Swirl Flow Conditions
,” 18th
IAHR
Symposium on Hydraulic Machinery and Systems
, Valencia, Spain, Sept. 16–19, pp. 925–934.
30.
Fortin
,
M.
,
2016
, “
Étude numérique des phénomènes transitoires dans une turbine axiale de type Hélice durant l'emballement
,” Master thesis, Laval University, Quebec, QC, Canada.
31.
Nennemann
,
B.
,
Morissette
,
J. F.
,
Chamberland-Lauzon
,
J.
,
Monette
,
C.
,
Braun
,
O.
,
Melot
,
M.
,
Coutu
,
A.
,
Nicolle
,
J.
, and
Giroux
,
A.-M.
,
2014
, “
Challenges in Dynamic Pressure and Stress Predictions at No-Load Operation in Hydraulic Turbines
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
, p.
032055
.
32.
Menter
,
F. R.
,
Schütze
,
J.
, and
Gritskevich
,
M.
,
2012
, “
Global vs. Zonal Approaches in Hybrid RANS-LES Turbulence Modelling
,”
Progress in Hybrid RANS-LES Modelling
,
Springer
,
Berlin
, pp.
15
28
.
33.
Krappel
,
T.
,
Ruprecht
,
A.
,
Riedelbauch
,
S.
,
Jester-Zuerker
,
R.
, and
Jung
,
A.
,
2014
, “
Investigation of Francis Turbine Part Load Instabilities Using Flow Simulations With a Hybrid RANS-LES Turbulence Model
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
3
), p. 032001.
34.
Krappel
,
T.
,
Riedelbauch
,
S.
,
Jester-Zuerker
,
R.
,
Jung
,
A.
,
Flurl
,
B.
,
Unger
,
F.
, and
Galpin
,
P.
,
2016
, “
Turbulence Resolving Flow Simulations of a Francis Turbine in Part Load Using Highly Parallel CFD Simulations
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
49
(6), p. 062014.
35.
Nicolle
,
J.
,
Labbé
,
P.
,
Gauthier
,
G.
, and
Lussier
,
M.
,
2010
, “
Impact of Blade Geometry Differences for the CFD Performance Analysis of Existing Turbines
,” 25th
IAHR
Symposium on Hydraulic Machinery and Systems
, Timisoara, Romania, Sept. 20–24, pp. 1–10.
36.
ANSYS,
2016
, “
ANSYS CFX User Manual, Version 17.2
,” ANSYS Inc., Canonsburg, PA.
37.
Carnevale
,
G. F.
,
Kloosterziel
,
R. C.
,
Orlandi
,
P.
, and
van Sommerden
,
D. D. J. A.
,
2011
, “
Predicting the Aftermath of Vortex Breakup in Rotating Flow
,”
J. Fluid Mech.
,
669
, pp.
90
119
.
38.
Bettocchi
,
R.
,
Cantore
,
G.
,
Magri
,
L.
, and
Ubaldi
,
M.
,
1982
, “
Analyse experimental de l'écoulement dans la zone axiale des canaux adducteurs des turbines-hélices
,”
La Houille Blanche
,
7/8
.
39.
Skotak
,
A.
,
1996
, “
Modelling of the Swirl Flow in a Kaplan Turbine Operating Under Off-Cam Conditions
,”
International Journal of Hydropower and Dams Status Meeting
, Lausanne, Switzerland, pp. 197–204.https://www.tib.eu/en/search/id/BLCP%3ACN017166771/Modelling-of-the-swirl-flow-in-a-Kaplan-turbine/
You do not currently have access to this content.