Globe valve is widely used in numerous industries, and its driving energy consumption accounts for high percentages of the whole piping system. In order to figure out novel globe valves with low energy consumption, the pilot control globe valve (PCGV) is proposed, which is made up of a main valve and a pilot valve. By the pressure difference of fluid itself, the opened/closed status of the main valve can be controlled by the pilot valve, which can save driving energy and shorten the response time. In order to fit PCGV in an angle displaced piping system, the pilot control angle globe valve (PCAGV) is developed. In this paper, with validated numerical methods, both steady and transient simulations focusing on the valve core diameter, the single/multi orifices, orifice diameters and their arrangements located on the valve core bottom are presented. The results show that the pressure difference increases with the increase of the valve core diameter and the decrease of the orifice diameter, and large orifice diameters (d > 12 mm) should be avoided in case the valve cannot be opened. As for the multi orifices, it can be treated as a single orifice which having similar cross-sectional area. Meanwhile, the opening time of the main valve also increases with the increase of the valve core diameter correspondingly. Besides, a fitting formula of pressure difference calculation depending on the inlet velocity and the valve core diameter is obtained, which is a power–law relationship.

References

References
1.
Zhang
,
H.
,
Kuang
,
J. Y.
,
Wang
,
J. K.
,
Qian
,
J. Y.
, and
Jin
,
Z. J.
,
2011
, “
Characteristics Numerical Analysis for Open and Close Feature of a Pilot-Controlling Cut-Off Valve Based on UDFs Program
,”
Light Ind. Mach.
,
29
(
2
), pp.
10
13
.
2.
Qian
,
J. Y.
,
Wei
,
L.
,
Jin
,
Z. J.
,
Wang
,
J. K.
, and
Zhang
,
H.
,
2014
, “
CFD Analysis on the Dynamic Flow Characteristics of the Pilot-Control Globe Valve
,”
Energy Convers. Manage.
,
87
, pp.
220
226
.
3.
Qian
,
J. Y.
,
Liu
,
B. Z.
,
Jin
,
Z. J.
,
Wang
,
J. K.
, and
Zhang
,
H.
,
2016
, “
Numerical Analysis of Flow and Cavitation Characteristics in a Pilot-Control Globe Valve With Different Valve Core Displacements
,”
J. Zhejiang Univ., Sci., A
,
17
(
1
), pp.
54
64
.
4.
Qian
,
J. Y.
,
Liu
,
B. Z.
,
Lei
,
L. N.
,
Zhang
,
H.
,
Wang
,
J. K.
, and
Jin
,
Z. J.
,
2016
, “
Effects of Orifice on Pressure Difference in Pilot-Control Globe Valve by Experimental and Numerical Methods
,”
Int. J. Hydrogen Energy
,
41
(
41
), pp.
18562
18570
.
5.
Qian
,
J. Y.
,
Gao
,
Z. X.
,
Wang
,
J. K.
, and
Jin
,
Z. J.
,
2017
, “
Experimental and Numerical Analysis of Spring Stiffness on Flow and Valve Core Movement in Pilot Control Globe Valve
,”
Int. J. Hydrogen Energy
,
42
(
27
), pp.
17192
17201
.
6.
Jin
,
Z. J.
,
Gao
,
Z. X.
,
Zhang
,
M.
, and
Qian
,
J. Y.
,
2017
, “
Pressure Drop Analysis of Pilot-Control Globe Valve With Different Structural Parameters
,”
ASME J. Fluids Eng.
,
139
(
9
), p.
091102
.
7.
Qian
,
J. Y.
,
Gao
,
Z. X.
,
Liu
,
B. Z.
,
Jin
,
Z. J.
,
Wu
,
Z.
, and
Sunden
,
B.
,
2017
, “
A Comparison Study on Structures and Fluid Dynamic Characteristics of Three Different Pilot-Control Globe Valves
,”
Ninth International Conference on Fluid Power Transmission and Control
, Hangzhou, China, Apr. 11–13, pp.
298
306
.
8.
Jin
,
Z. J.
,
Gao
,
Z. X.
,
Zhang
,
M.
,
Liu
,
B. Z.
, and
Qian
,
J. Y.
,
2017
, “
Computational Fluid Dynamics Analysis on Orifice Structure Inside Valve Core of Pilot-Control Angle Globe Valve
,”
Proc. Inst. Mech. Eng., Part C.
, epub.
9.
Qiu
,
T.
,
Dai
,
H.
,
Lei
,
Y.
,
Song
,
X.
, and
Cao
,
C.
,
2017
, “
Investigation of the Unsteady-Flow Characteristics in the Control Valve of a Diesel Engine Unit Pump Fuel System
,”
Proc. Inst. Mech. Eng. Part D
,
231
(
7
), pp.
927
940
.
10.
Mohr
,
S.
,
Clarke
,
H.
,
Garner
,
C. P.
,
Rebelo
,
N.
,
Williams
,
A. M.
, and
Zhao
,
H.
,
2017
, “
On the Measurement and Modeling of High-Pressure Flows in Poppet Valves Under Steady-State and Transient Conditions
,”
ASME J. Fluids Eng.
,
139
(
7
), p.
071104
.
11.
Woo
,
J.
,
Goo
,
N. S.
,
Li
,
Y. Z.
,
Kang
,
S. H.
, and
Ko
,
H. S.
,
2016
, “
A Study on Flow Distribution for Integrated Hybrid Actuator by Analysis of Reed Valve
,”
J. Mech. Sci. Technol.
,
30
(
5
), pp.
2069
2074
.
12.
Frosina
,
E.
,
Senatore
,
A.
,
Buono
,
D.
, and
Stelson
,
K. A.
,
2017
, “
A Modeling Approach to Study the Fluid-Dynamic Forces Acting on the Spool of a Flow Control Valve
,”
ASME J. Fluids Eng.
,
139
(
1
), p.
011103
.
13.
Frosina
,
E.
,
Senatore
,
A.
,
Buono
,
D.
, and
Stelson
,
K. A.
,
2016
, “
A Mathematical Model to Analyze the Torque Caused by Fluid–Solid Interaction on a Hydraulic Valve
,”
ASME J. Fluids Eng.
,
138
(
6
), p.
061103
.
14.
Frosina
,
E.
,
Buono
,
D.
,
Senatore
,
A.
, and
Costin
,
I. J.
,
2016
, “
A Simulation Methodology Applied on Hydraulic Valves for High Fluxes
,”
Int. Rev. Model. Simul.
,
9
(
3
), pp.
217
226
.
15.
Aung
,
N. Z.
,
Yang
,
Q.
,
Chen
,
M.
, and
Li
,
S.
,
2014
, “
CFD Analysis of Flow Forces and Energy Loss Characteristics in a Flapper–Nozzle Pilot Valve With Different Null Clearances
,”
Energy Convers. Manage.
,
83
, pp.
284
295
.
16.
Zhang
,
S.
,
Aung
,
N. Z.
, and
Li
,
S.
,
2015
, “
Reduction of Undesired Lateral Forces Acting on the Flapper of a Flapper–Nozzle Pilot Valve by Using an Innovative Flapper Shape
,”
Energy Convers. Manage.
,
106
, pp.
835
848
.
17.
Yuan
,
Q.
, and
Li
,
P. Y.
,
2005
, “
Using Steady Flow Force for Unstable Valve Design: Modeling and Experiments
,”
ASME J. Dyn. Syst., Meas., Control
,
127
(
3
), pp.
451
462
.
18.
Edvardsen
,
S.
,
Dorao
,
C. A.
, and
Nydal
,
O. J.
,
2015
, “
Experimental and Numerical Study of Single-Phase Pressure Drop in Downhole Shut-In Valve
,”
J. Nat. Gas Sci. Eng.
,
22
, pp.
214
226
.
19.
Lisowski
,
E.
,
Czyżycki
,
W.
, and
Rajda
,
J.
,
2013
, “
Three Dimensional CFD Analysis and Experimental Test of Flow Force Acting on the Spool of Solenoid Operated Directional Control Valve
,”
Energy Convers. Manage.
,
70
, pp.
220
229
.
20.
Lisowski
,
E.
,
Filo
,
G.
, and
Rajda
,
J.
,
2015
, “
Pressure Compensation Using Flow Forces in a Multi-Section Proportional Directional Control Valve
,”
Energy Convers. Manage.
,
103
, pp.
1052
1064
.
21.
Lisowski
,
E.
,
Czyżycki
,
W.
, and
Rajda
,
J.
,
2014
, “
Multifunctional Four-Port Directional Control Valve Constructed From Logic Valves
,”
Energy Convers. Manage.
,
87
, pp.
905
913
.
22.
Cho
,
T. D.
,
Yang
,
S. M.
,
Lee
,
H. Y.
, and
Ko
,
S. H.
,
2007
, “
A Study on the Force Balance of an Unbalanced Globe Valve
,”
J. Mech. Sci. Technol.
,
21
(
5
), pp.
814
820
.
23.
Lin
,
Z.
,
Wang
,
H.
,
Shang
,
Z.
,
Cui
,
B.
,
Zhu
,
C.
, and
Zhu
,
Z.
,
2015
, “
Effect of Cone Angle on the Hydraulic Characteristics of Globe Control Valve
,”
Chin. J. Mech. Eng.
,
28
(
3
), pp.
641
648
.
24.
Kim
,
C. K.
, and
Yoon
,
J. Y.
,
2015
, “
Experimental Study for Flow Characteristics of Eccentric Butterfly Valves
,”
Proc. Inst. Mech. Eng. Part E
,
229
(
4
), pp.
309
314
.
25.
Cho
,
I. S.
, and
Jung
,
J. Y.
,
2015
, “
A Study on Flow Control Valve Characteristics in an Oil Hydraulic Vane Pump for Power Steering Systems
,”
J. Mech. Sci. Technol.
,
29
(
6
), pp.
2357
2363
.
26.
Cho
,
I. S.
,
2015
, “
A Study on the Optimum Design for the Valve Plate of a Swash Plate-Type Oil Hydraulic Piston Pump
,”
J. Mech. Sci. Technol.
,
29
(
6
), pp.
2409
2413
.
27.
Shin
,
C. H.
,
2013
, “
A Numerical Study on the Characteristics of Transient Flow in a Pressure Regulator Resulting From Closure of the Pressure Control Valve
,”
J. Mech. Sci. Technol.
,
27
(
2
), pp.
443
449
.
28.
Lee
,
G. S.
,
Sung
,
H. J.
, and
Kim
,
H. C.
,
2013
, “
Multiphysics Analysis of a Linear Control Solenoid Valve
,”
ASME J. Fluids Eng.
,
135
(
1
), p.
011104
.
29.
Ishii
,
E.
,
Yoshimura
,
K.
,
Yasukawa
,
Y.
, and
Ehara
,
H.
,
2017
, “
Effects of Opening and Closing Fuel-Injector Valve on Air/Fuel Mixture
,”
ASME J. Eng. Gas Turbines Power
,
139
(
9
), p.
092804
.
30.
Zeng
,
L. F.
,
Liu
,
G. W.
,
Mao
,
J. R.
,
Wang
,
S. S.
,
Yuan
,
Q.
,
Yuan
,
H.
,
Wang
,
K. G.
,
Zhang
,
J. J.
, and
Xu
,
Y. T.
,
2015
, “
Flow-Induced Vibration and Noise in Control Valve
,”
Proc. Inst. Mech. Eng., Part C
,
229
(
18
), pp.
3368
3377
.
31.
Jang
,
S. C.
, and
Kang
,
J. H.
,
2017
, “
Orifice Design of a Pilot-Operated Pressure Relief Valve
,”
ASME J. Pressure Vessel Technol.
,
139
(
3
), p.
031601
.
32.
Chern
,
M. J.
,
Hsu
,
P. H.
,
Cheng
,
Y. J.
,
Tseng
,
P. Y.
, and
Hu
,
C. M.
,
2012
, “
Numerical Study on Cavitation Occurrence in Globe Valve
,”
J. Energy Eng.
,
139
(
1
), pp.
25
34
.
33.
Liao
,
Y.
, and
Lucas
,
D.
,
2015
, “
3D CFD Simulation of Flashing Flows in a Converging-Diverging Nozzle
,”
Nucl. Eng. Des.
,
292
, pp.
149
163
.
34.
Le
,
Q. D.
,
Mereu
,
R.
,
Besagni
,
G.
,
Dossena
,
V.
, and
Inzoli
,
F.
,
2016
, “
Simulation of R718 Flash Boiling Flow Inside Motive Nozzle of Ejector
,”
First International Conference IIR of Cryogenics and Refrigeration Technology
, Bucharest, Romania, June 22–25, pp.
116
123
.https://www.researchgate.net/profile/Quang_Dang_Le/publication/302928998_Numerical_modelling_of_R718_flash_boiling_flow_insidemotive_nozzle_of_ejector/links/5820517408aea429b29ba2f1/Numerical-modelling-of-R718-flash-boiling-flow-insidemotive-nozzle-of-ejector.pdf
35.
Giacomelli
,
F.
,
Biferi
,
G.
,
Mazzelli
,
F.
, and
Milazzo
,
A.
,
2016
, “
CFD Modeling of the Supersonic Condensation Inside a Steam Ejector
,”
Energy Proc.
,
101
, pp.
1224
1231
.
36.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
123
160
.
37.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H. W.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
38.
Davis
,
J. A.
, and
Stewart
,
M.
,
2002
, “
Predicting Globe Control Valve Performance - Part I: CFD Modeling
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
772
777
.
39.
Davis
,
J. A.
, and
Stewart
,
M.
,
2002
, “
Predicting Globe Control Valve Performance—Part II: Experimental Verification
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
778
783
.
40.
Munson
,
B. R.
,
Okiishi
,
T. H.
,
Huebsch
,
W. W.
, and
Rothmayer
,
A. P.
,
2013
,
Fundamentals of Fluid Mechanics
,
7th ed.
,
Wiley
,
New York
.
41.
Colombo
,
E.
,
Inzoli
,
F.
, and
Mereu
,
R.
,
2012
, “
A Methodology for Qualifying Industrial CFD: The Q 3 Approach and the Role of a Protocol
,”
Comput. Fluids
,
54
, pp.
56
66
.
You do not currently have access to this content.