Three-dimensional (3D) numerical flow simulations with a mass transfer cavitation model are performed to analyze cloud cavitation at two different flow configurations, i.e., hydrofoil and orifice flows, focusing on the turbulence and cavitation model interaction, including a mixture eddy viscosity reduction and cavitation model parameter modification. For the cavitating flow around the hydrofoil with circular leading edge, a good agreement to the measured shedding frequencies as well as local cavitation structures is obtained over a wide range of operation points, even with a moderate boundary layer resolution, i.e., utilizing wall functions (WF), which are found to be adequate to capture the re-entrant jet reasonably in the absence of viscous separation. Simulations of the orifice flow, that exhibit significant viscous single-phase (SP) flow separation, are analyzed concerning the prediction of choking and cloud cavitation. A low-Reynolds number turbulence approach in the orifice wall vicinity is suggested to capture equally the mass flow rate, flow separation, and cloud shedding with satisfying accuracy in comparison to in-house measurements. Local cavitation structures are analyzed in a time-averaged manner for both cases, revealing a reasonable prediction of the spatial extent of the cavitation zones. However, different cavitation model parameters are utilized at hydrofoil and orifice for best agreement with measurement data.

References

References
1.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
International Conference on Multiphase Flow
(ICMF), Yokohama, Japan, May 30–June 4, Paper No. 152.
2.
Frobenius
,
M.
,
Schilling
,
R.
,
Friedrichs
,
J.
, and
Kosyna
,
G.
,
2002
, “
Numerical and Experimental Investigations of the Cavitating Flow in a Centrifugal Pump Impeller
,”
ASME
Paper No. FEDSM2002-31006.
3.
Frobenius
,
M.
,
Schilling
,
R.
,
Bachert
,
R.
,
Stoffel
,
B.
, and
Ludwig
,
G.
,
2003
, “
Three-Dimensional Unsteady Cavitation Effects on a Single Hydrofoil and in a Radial Pump—Measurements and Numerical Simulations—Part 2: Numerical Simulation
,”
Fifth International Symposium on Cavitation
, Osaka, Japan, Nov. 1–5, Paper No. Cav03-GS-9-005.
4.
Dular
,
M.
,
Bachert
,
R.
, and
Širok
,
B.
,
2004
, “
Relationship Between Cavitation Structures and Cavitation Damage
,”
Wear
,
257
(
11
), pp.
1176
1184
.
5.
Pelz
,
P.
,
Keil
,
T.
, and
Groß
,
T. F.
,
2017
, “
The Transition From Sheet to Cloud Cavitation
,”
J. Fluid Mech.
,
817
, pp.
439
454
.
6.
Dular
,
M.
,
Bachert
,
R.
,
Stoffel
,
B.
, and
Širok
,
B.
,
2005
, “
Experimental Evaluation of Numerical Simulation of Cavitating Flow Around Hydrofoil
,”
Eur. J. Mech.—B/Fluids
,
24
(
4
), pp.
522
538
.
7.
Li
,
D. Q.
,
Grekula
,
M.
, and
Lindell
,
P.
,
2009
, “
A Modified SST k-ω Turbulence Model to Predict the Steady and Unsteady Sheet Cavitation on 2D and 3D Hydrofoils
,”
Seventh International Symposium on Cavitation
, Ann Arbor, MI, Aug. 16–20, Paper No. 107.
8.
Li
,
Z.
,
Pourquie
,
M.
, and
Terwisga
,
T. J. C.
,
2010
, “
A Numerical Study of Steady and Unsteady Cavitation on a 2D Hydrofoil
,”
J. Hydrodyn., Ser. B
,
22
(
5
), pp.
770
777
.
9.
Huang
,
B.
,
Ducoin
,
A.
, and
Young
,
Y.
,
2012
, “
Evaluation of Cavitation Models for Prediction of Transient Cavitating Flows Around a Pitching Hydrofoil
,”
Eighth International Symposium on Cavitation
, Singapore, Aug. 14–16, pp.
601
608
.
10.
Ducoin
,
A.
,
Huang
,
B.
, and
Young
,
Y.
,
2012
, “
Numerical Modeling of Unsteady Cavitating Flows Around a Stationary Hydrofoil
,”
Int. J. Rotating Mach.
,
2012
, p. 215678.
11.
Huang
,
B.
,
Young
,
Y.
,
Wang
,
G.
, and
Shyy
,
W.
,
2013
, “
Combined Experimental and Computational Investigation of Unsteady Structure of Sheet/Cloud Cavitation
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071301
.
12.
Huang
,
B.
,
Ducoin
,
A.
, and
Young
,
Y.
,
2013
, “
Physical and Numerical Investigation of Cavitating Flows Around a Pitching Hydrofoil
,”
Phys. Fluids
,
25
(
10
), p.
102109
.
13.
Tran
,
T.
,
Nennemann
,
B.
,
Vu
,
T.
, and
Guibault
,
F.
,
2014
, “
Numerical Simulation of Unsteady Sheet/Cloud Cavitation
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
5
), p.
052012
.
14.
Frikha
,
S.
,
Coutier-Delgosha
,
O.
, and
Astolfi
,
J. A.
,
2008
, “
Influence of the Cavitation Model on the Simulation of Cloud Cavitation on 2D Foil Section
,”
Int. J. Rotating Mach.
,
2008
, p.
146234
.
15.
Morgut
,
M.
,
Nobile
,
E.
, and
Biluš
,
I.
,
2011
, “
Comparison of Mass Transfer Models for the Numerical Prediction of Sheet Cavitation Around a Hydrofoil
,”
Int. J. Multiphase Flow
,
37
(
6
), pp.
620
626
.
16.
Salvadori
,
S.
,
Cappelletti
,
A.
, and
Martelli
,
F.
,
2012
, “
Numerical Prediction of Cavitation in Pumps
,”
15th International Conference on Fluid Flow Technologies
, Budapest, Hungary, Sept. 4–7.https://www.researchgate.net/publication/259073627_Numerical_Prediction_of_Cavitation_in_Pumps
17.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
,
2003
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
38
45
.
18.
Reboud
,
J. L.
,
Stutz
,
B.
, and
Coutier
,
O.
,
1998
, “
Two-Phase Flow Structure of Cavitation: Experiment and Modeling of Unsteady Effects
,”
Third International Symposium on Cavitation
, Grenoble, France, Apr. 7–10.https://www.researchgate.net/publication/248179422_Two-phase_flow_structure_of_cavitation_Experiment_and_modeling_of_unsteady_effects
19.
Biluš
,
I.
,
Morgut
,
M.
, and
Nobile
,
E.
,
2013
, “
Simulation of Sheet and Cloud Cavitation With Homogeneous Transport Models
,”
Int. J. Simul. Modell.
,
12
(
2
), pp.
94
106
.
20.
Jošt
,
D.
,
Škerlavaj
,
A.
,
Morgut
,
M.
, and
Nobile
,
E.
,
2017
, “
Numerical Prediction of Cavitating Vortex Rope in a Draft Tube of a Francis Turbine With Standard and Calibrated Cavitation Model
,”
J. Phys.: Conf. Ser.
,
813
(
1
), p.
012045
.
21.
Chatagny
,
L.
, and
Berten
,
S.
,
2016
, “
Challenges and Open Questions in Cavitation Simulations for Centrifugal Pump Applications
,”
Third International Rotating Equipment Conference
, Düsseldorf, Germany, Sept. 14–15, pp.
765
775
.
22.
Salvadori
,
S.
,
Cappelletti
,
A.
,
Montomoli
,
F.
,
Nicchio
,
A.
, and
Martelli
,
F.
,
2015
, “
Experimental and Numerical Evaluation of the NPSHR Curve of an Industrial Centrifugal Pump
,”
11th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics
, Madrid, Spain, Mar. 23–27, Paper No.
ETC2015-011
.https://www.researchgate.net/publication/272443365_Experimental_and_Numerical_Evaluation_of_the_NPSHR_Curve_of_an_Industrial_Centrifugal_Pump
23.
Limbach
,
P.
, and
Skoda
,
R.
,
2017
, “
Numerical and Experimental Analysis of Cavitating Flow in a Low Specific Speed Centrifugal Pump With Different Surface Roughness
,”
ASME J. Fluids Eng.
,
139
(
10
), p.
101201
.
24.
Limbach
,
P.
,
Kimoto
,
M.
,
Deimel
,
C.
, and
Skoda
,
R.
,
2014
, “
Numerical 3D Simulation of the Cavitating Flow in a Centrifugal Pump With Low Specific Speed and Evaluation of the Suction Head
,”
ASME
Paper No. GT2014-26089.
25.
Böhm
,
R.
,
1998
, “
Erfassung Und Hydrodynamische Beeinflussung Fortgeschrittener Kavitationszustände Und Ihrer Erosiven Aggressivität
,” Ph.D. thesis, Technical University of Darmstadt, Darmstadt, Germany.
26.
Hofmann
,
M.
,
Lohrberg
,
H.
,
Ludwig
,
G.
,
Stoffel
,
B.
, and
Reboud
,
J. L.
,
1999
, “
Numerical and Experimental Investigations on the Self-Oscillating Behaviour of Cloud Cavitation—Part 1: Visualisation
,”
ASME
Paper No. FEDSM99-6755.
27.
Reboud
,
J. L.
,
Fortes-Patella
,
R.
,
Hofmann
,
M.
,
Lohrberg
,
H.
, and
Ludwig
,
G.
,
1999
, “
Numerical and Experimental Investigations on the Self-Oscillating Behaviour of Cloud Cavitation—Part 2: Dynamic Pressures
,”
ASME
Paper No. FEDSM99-7259.
28.
Bachert
,
B.
,
Dular
,
M.
,
Baumgarten
,
S.
,
Ludwig
,
G.
, and
Stoffel
,
B.
,
2004
, “
Experimental Investigations concerning Erosive Aggressiveness of Cavitation at Different Test Configurations
,”
ASME
Paper No. HT-FED2004-56597.
29.
Dular
,
M.
, and
Coutier-Delgosha
,
O.
,
2009
, “
Numerical Modelling of Cavitation Erosion
,”
Int. J. Numer. Methods Fluids
,
61
(
12
), pp.
1388
1410
.
30.
Rayleigh
,
L.
,
1917
, “
On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity
,”
Philos. Mag.
,
34
(
200
), pp.
94
98
.
31.
Plesset
,
M. S.
, and
Prosperetti
,
A.
,
1977
, “
Bubble Dynamics and Cavitation
,”
Annu. Rev. Fluid Mech.
,
9
(
1
), pp.
145
185
.
32.
Brennen
,
C. E.
,
2011
,
Hydrodynamics of Pumps
,
Cambridge University Press
,
New York
.
33.
Bakir
,
F.
,
Rey
,
R.
,
Gerber
,
A. G.
,
Belamri
,
T.
, and
Hutchinson
,
B.
,
2004
, “
Numerical and Experimental Investigations of the Cavitating Behavior of an Inducer
,”
Int. J. Rotating Mach.
,
10
(
1
), pp.
15
25
.
34.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
35.
Menter
,
F. R.
, and
Esch
,
T.
,
2001
, “
Elements of Industrial Heat Transfer Predictions
,”
16th Brazilian Congress of Mechanical Engineering
, Uberlandia, Brazil, Nov. 26–30, pp.
117
127
.
36.
Iben
,
U.
,
Morozov
,
A.
,
Winklhofer
,
E.
, and
Skoda
,
R.
,
2011
, “
Optical Investigations of Cavitating Flow Phenomena in Micro Channels Using a Nano Second Resolution
,”
Third International Cavitation Forum
(
WIMRC
), Warwick, UK, July 4–6, pp. 1–7.https://www.researchgate.net/publication/265092308_Optical_investigations_of_cavitating_flow_phenomena_in_micro_channels_using_a_nano_second_resolution
37.
Iben
,
U.
,
Morozov
,
A.
,
Winklhofer
,
E.
, and
Wolf
,
F.
,
2011
, “
Laser-Pulse Interferometry Applied to High-Pressure Fluid Flow in Micro Channels
,”
Exp. Fluids
,
50
(
3
), pp.
597
611
.
38.
Tomov
,
P.
,
Khelladi
,
S.
,
Ravelet
,
F.
,
Sarraf
,
C.
,
Bakir
,
F.
, and
Vertenoeuil
,
P.
,
2016
, “
Experimental Study of Aerated Cavitation in a Horizontal Venturi Nozzle
,”
Exp. Therm. Fluid Sci.
,
70
, pp.
85
95
.
39.
Dular
,
M.
,
Bachert
,
R.
,
Schaad
,
C.
, and
Stoffel
,
B.
,
2007
, “
Investigation of a Re-Entrant Jet Reflection at an Inclined Cavity Closure Line
,”
Eur. J. Mech. B/Fluids
,
26
(
5
), pp.
688
705
.
40.
Callenaere
,
M.
,
Franc
,
J.
,
Michel
,
J.
, and
Riondet
,
M.
,
2001
, “
The Cavitation Instability Induced by the Development of a Re-Entrant Jet
,”
J. Fluid Mech.
,
444
, pp.
223
256
.
41.
Franc
,
J.
,
2001
, “
Partial Cavity Instabilities and Re-Entrant Jet
,”
Fourth International Symposium on Cavitation
, Pasadena, CA, June 20–23, Paper No.
CAV2001:lecture.002
http://caltechconf.library.caltech.edu/50/.
42.
Blackman
,
R. B.
, and
Turkey
,
J. W.
,
1958
, “
The Measurement of Power Spectra, From the Point of View of Communications Engineering
,”
Bell. Syst. Tech. J.
,
37
(
1
), pp.
185
282
.
43.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
161
164
.
44.
Kawanami
,
Y.
,
Kato
,
H.
, and
Yamaguchi
,
H.
,
1998
, “
Three-Dimensional Characteristics of the Cavities Formed on a Two-Dimensional Hydrofoil
,”
Third International Symposium on Cavitation
, Grenoble, France, Apr. 7–10, pp.
191
196
.
45.
Franc
,
J. P.
, and
Michel
,
J. M.
,
2004
,
Fundamentals of Cavitation
(Fluid Mechanics and its Applications, Vol. 76),
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
46.
Kowalski
,
K.
,
Pollak
,
S.
, and
Hussong
,
J.
,
2017
, “
Experimental Investigation of Cavitation Induced Air Release
,”
EPJ Web Conf.
,
143
, p. 02054.
47.
Kowalski
,
K.
,
Pollak
,
S.
,
Skoda
,
R.
, and
Hussong
,
J.
,
2017
, “
Experimental Study on Cavitation-Induced Air Release in Orifice Flows
,”
ASME J. Fluids Eng.
,
140
(6), p. 061201.
48.
Dular
,
M.
, and
Petkovšek
,
M.
,
2015
, “
On the Mechanisms of Cavitation Erosion—Coupling High Speed Videos to Damage Patterns
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
359
370
.
You do not currently have access to this content.