This study deals with the pressure peak position shift with deadrise angle during the initial phase of a two-dimensional (2D) wedge water entry. The finite volume method with volume of fluid (VOF) and dynamic mesh technique is used to simulate the water entry process of the 2D wedges with the moderate deadrise angles within the range α = 20 deg–60 deg. The results show that with the increasing deadrise angle, the pressure peak position shifts from the spray root to the wedge apex. And, the critical deadrise angle of pressure peak position shift is identified in the range between 40.8 deg and 41 deg, which is more precise than previous studies. In the initial stage of water entry of a 2D wedge, the pressure on wedge side is determined by the dynamic pressure term and unsteady term simultaneously. For the spray root position, at small deadrise angles, the unsteady term is stronger than the dynamic pressure term; at large deadrise angles, the former is weaker than the later.

References

References
1.
Climent
,
H.
,
Benitez
,
L.
,
Rosich
,
F.
,
Rueda
,
F.
, and
Pentecote
,
N.
,
2006
, “
Aircraft Ditching Numerical Simulation
,”
25th International Congress of the Aeronautical Sciences
, Hamburg, Germany, Sept. 3–8.
2.
Toso
,
N. R. S.
,
2009
, “
Contribution to the Modelling and Simulation of Aircraft Structures Impacting on Water
,”
Ph.D. thesis
, Universität Stuttgart, Stuttgart, Germany.https://elib.uni-stuttgart.de/handle/11682/3840
3.
Shah
,
S. A.
,
2010
, “
Water Impact Investigations for Aircraft Ditching Analysis
,”
Master thesis
, Royal Melbourne Institute of Technology, Melbourne, Australia.https://researchbank.rmit.edu.au/eserv/rmit:6137/Shah.pdf
4.
Guo
,
B. D.
,
Liu
,
P. Q.
,
Qu
,
Q. L.
, and
Wang
,
J. W.
,
2013
, “
Effect of Pitch Angle on Initial Stage of a Transport Airplane Ditching
,”
Chin. J. Aeronaut.
,
26
(
1
), pp.
17
26
.
5.
Seddon
,
C. M.
, and
Moatamedi
,
M.
,
2006
, “
Review of Water Entry With Applications to Aerospace Structures
,”
Int. J. Impact Eng.
,
32
(
7
), pp.
1045
1067
.
6.
Faltinsen
,
O. M.
,
Landrini
,
M.
, and
Greco
,
M.
,
2004
, “
Slamming in Marine Applications
,”
J. Eng. Math.
,
48
(
3–4
), pp.
187
217
.
7.
Kapsenberg
,
G. K.
,
2011
, “
Slamming of Ships: Where are We Now?
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
369
(
1947
), pp.
2892
2919
.
8.
May
,
A.
,
1975
, “
Water Entry and the Cavity Running Behavior of Missiles
,” NAVSEA Hydroballistics Advisory Committee, Silver Spring, MD, SEAHAC Technical Report No.
75-2
.http://www.dtic.mil/docs/citations/ADA020429
9.
Zou
,
L.
,
Zhu
,
G. X.
,
Chen
,
Z.
,
Pei
,
Y. G.
, and
Zong
,
Z.
,
2017
, “
Numerical Investigation on the Water Entry of Convex Objects Using a Multiphase Smoothed Particle Hydrodynamics Model
,”
Int. J. Comput. Methods
,
15
(
2
), p.
1850008
.
10.
Dyment
,
A.
,
2015
, “
Compressible Liquid Impact against a Rigid Body
,”
ASME J. Fluids Eng.
,
137
(
3
), p.
031102
.
11.
Shi
,
H. H.
,
Itoh
,
M.
, and
Takami
,
T.
,
2000
, “
Optical Observation of the Supercavitation Induced by High-Speed Water Entry
,”
ASME J. Fluids Eng.
,
122
(
4
), pp.
806
810
.
12.
von Kármán
,
T.
,
1929
, “
The Impact on Seaplane Floats During Landing
,” National Advisory Committee for Aeronautics, Washington, DC, Report No.
NACA TN 321
.https://ntrs.nasa.gov/search.jsp?R=19930081174
13.
Wagner
,
H.
,
1932
, “
ÜberStoß- Und Gleitvorgänge an Der Oberfläche Von Flüssigkeiten,” Zeitschriftfür
,”
Angew. Math. Mech.
,
12
(
4
), pp.
193
215
.
14.
Dobrovol'skaya
,
Z. N.
,
1969
, “
On Some Problems of Similarity Flow of Fluid With a Free Surface
,”
J. Fluid Mech.
,
36
(
4
), pp.
805
829
.
15.
Cointe
,
R.
,
1989
, “
Two-Dimensional Water-Solid Impact
,”
ASME J. Offshore Mech. Arct.
,
111
(
2
), pp.
109
114
.
16.
Zhao
,
R.
, and
Faltinsen
,
O.
,
1993
, “
Water Entry of Two-Dimensional Bodies
,”
J. Fluid Mech.
,
246
(
1
), pp.
593
612
.
17.
Mei
,
X.
,
Liu
,
Y.
, and
Yue Dick
,
K. P.
,
1999
, “
On the Water Impact of General Two-Dimensional Sections
,”
Appl. Ocean Res.
,
21
(
1
), pp.
1
15
.
18.
Lu
,
C. H.
,
He
,
Y. S.
, and
Wu
,
G. X.
,
2000
, “
Coupled Analysis of Nonlinear Interaction Between Fluid and Structure During Impact
,”
J. Fluid Struct.
,
14
(
1
), pp.
127
146
.
19.
Wu
,
G. X.
,
Sun
,
H.
, and
He
,
Y. S.
,
2004
, “
Numerical Simulation and Experimental Study of Water Entry of a Wedge in Free Fall Motion
,”
J. Fluid Struct.
,
19
(
3
), pp.
277
289
.
20.
Peng
,
W.
, and
Wei
,
Q.
,
2016
, “
Solving 2D Water Entry Problems With a CIP Method and a Parallel Computing Algorithm
,”
Mar. Syst. Ocean Technol.
,
11
(
1–2
), pp.
1
9
.
21.
Das
,
K.
, and
Batra
,
R. C.
,
2011
, “
Local Water Slamming Impact on Sandwich Composite Hulls
,”
J. Fluid Struct.
,
27
(
4
), pp.
523
551
.
22.
Guo
,
B. D.
,
Liu
,
P. Q.
,
Qu
,
Q. L.
, and
Cui
,
Y. L.
,
2012
, “
Turbulence Models Performance Assessment for Pressure Prediction During Cylinder Water Entry
,”
Appl. Mech. Mater.
,
224
, pp.
225
229
.
23.
Qu
,
Q. L.
,
Hu
,
M. X.
,
Guo
,
H.
,
Liu
,
P. Q.
, and
Agarwal
,
R. K.
,
2015
, “
Study of Ditching Characteristics of Transport Aircraft by Global Moving Mesh Method
,”
J. Aircr.
,
52
(
5
), pp.
1
9
.
24.
Yettou
,
E. M.
,
Desrochers
,
A.
, and
Champoux
,
Y.
,
2006
, “
Experimental Study on the Water Impact of a Symmetrical Wedge
,”
Fluid Dyn. Res.
,
38
(
1
), pp.
47
66
.
You do not currently have access to this content.