A common method to calculate the flow rate and consequently hydraulic efficiency in hydropower plants is the pressure-time method. In the present work, the pressure-time method is studied numerically by three-dimensional (3D) simulations and considering the change in the pipe cross section (a contraction). Four different contraction angles are selected for the investigations. The unsteady Reynolds-averaged Navier–Stokes (URANS) equations and the low-Reynolds k–ω shear stress transport (SST) turbulence model are used to simulate the turbulent flow. The flow physics in the presence of the contraction, and during the deceleration period, is studied. The flow rate is calculated considering all the losses: wall shear stress, normal stresses, and also flux of momentum in the flow. The importance of each term is evaluated showing that the flux of momentum plays a most important role in the flow rate estimation while the viscous losses term is the second important factor. To extend the viscous losses calculations applicability to real systems, the quasi-steady friction approach is employed. The results showed that considering all the losses, the increase in the contraction angle does not influence the calculated errors significantly. However, the use of the quasi-steady friction factor introduces a larger error, and the results are reliable approximately up to a contraction angle of ϴ = 10 deg. The reason imparts to the formation of a local recirculation zone upstream and inside the contraction, which appears earlier as the contraction angle increases. This feature cannot be captured by the quasi-steady friction models, which are derived based on the fully developed flow assumption.

References

References
1.
IEC,
1991
, “
Field Acceptance Tests to Determine the Hydraulic Performance of Hydraulic Turbines, Storage Pumps and Pump-Turbines
,”
3rd ed.
,
International Electrotechnical Commission
,
Geneva, Switzerland
, Standard No.
IEC 60041
.https://www.saiglobal.com/pdftemp/previews/osh/iec/iec60000/60000/iec60041%7Bed3.0%7Den_d.img.pdf
2.
IS
,
1996
, “
Structural Design of Penstocks-Criteria—Part 3: Specials for Penstocks
,”
Bureau of Indian Standards code
,
New Delhi, India
, Standard No.
IS 11639-3
.https://archive.org/details/gov.in.is.11639.3.1996
3.
Adamkowski
,
A.
, and
Janicki
,
W.
,
2008
, “
A New Approach to Using the Classic Gibson Method to Measure Discharge
,”
15th International Seminar on Hydropower Plants
, Vienna, Austria, pp.
511
522
.
4.
Jonsson
,
P. P.
,
Cervantes
,
M. J.
, and
Finnstrom
,
M.
,
2007
, “
Numerical Investigation of the Gibson Method-Effects of Connecting Tubing
,”
Second IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems
, Timisoara, Romania, Oct. 24–26, pp.
305
310
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.561.3565&rep=rep1&type=pdf
5.
Jonsson
,
P. P.
,
Ramdal
,
J.
, and
Cervantes
,
M. J.
,
2008
, “
Experimental Investigation of the Gibson's Method Outside Standards
,”
24th IAHR Symposium on Hydraulic Machinery and Systems
, Foz Do Iguassu, Brazil, Oct. 27–31, pp.
1
9
.http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1000930&dswid=-6150
6.
Adamkowski
,
A.
, and
Janicki
,
W.
,
2009
, “
A Method for Measurement of Leakage Through Closed Turbine Wicket Gates
,”
HYDRO2009, International Conference and Exhibition
, Lyon, France, Oct. 26–28, pp.
1
8
.
7.
Dahlhaug
,
O. G.
,
Nielsen
,
T. K.
,
Brandastro
,
B.
,
Franco
,
H. H.
,
Wiborg
,
E. J.
, and
Hulaas
,
H.
,
2006
, “
Comparison Between Pressure-Time and Thermodynamic Efficiency Measurements on a Low Head Turbine
,”
Sixth IGHEM Symposium
, Portland, OR, July 30–Aug. 1, pp.
1
8.
http://ighem.org/Paper2006/d5.pdf
8.
Castro
,
L.
,
Urquiza
,
G.
,
Adamkowski
,
A.
, and
Reggio
,
M.
,
2011
, “
Experimental and Numerical Simulations Predictions Comparison of Power and Efficiency in Hydraulic Turbine
,”
Model. Simul. Eng.
,
2011
, pp.
1
8
.
9.
Bortoni
,
E. C.
, and
Santos
,
A. H. M.
,
2004
, “
On the Leakage Flow Measurement in Gibson Method Applied for Hydropower Plant
,”
WSEAS International Conference
, Miami, FL, Apr. 21–23.http://www.wseas.us/e-library/conferences/miami2004/papers/484-147.pdf
10.
Adamkowski
,
A.
,
Krzemianowski
,
Z.
, and
Janicki
,
W.
,
2009
, “
Improved Discharge Measurement Using the Pressure-Time Method in a Hydropower Plant Curved Penstock
,”
ASME J. Eng. Gas Turbines Power
,
131
(
5
), pp.
1
6
.
11.
Adamkowski
,
A.
, and
Janicki
,
W.
,
2010
, “
Selected Problems in Calculation Procedures for the Gibson Discharge Measurement Method
,”
IGHEM 2010, AHEC
, IIT Roorkee, India, Oct. 21–23, pp.
73
80
.
12.
Ghidaoui
,
M.
,
Zhao
,
M.
,
Mclnnis
,
D. A.
, and
Axworthy
,
D. H.
,
2005
, “
A Review of Water Hammer Theory and Practice
,”
ASME Appl. Mech. Rev.
,
58
(
1
), pp.
49
76
.
13.
Vardy
,
A. E.
, and
Hwang
,
K. L.
,
1991
, “
A Characteristic Model of Transient Friction in Pipes
,”
J. Hydraul. Res.
,
29
(
5
), pp.
669
685
.
14.
Pezzinga
,
G.
,
1999
, “
Quasi-2D Model for Unsteady Flow in Pipe Networks
,”
J. Hydraul. Eng.
,
125
(
7
), pp.
676
685
.
15.
Ghidaoui
,
M. S.
,
Mansour
,
G. S.
, and
Zhao
,
M.
,
2002
, “
Applicability of Quasi-Steady and Axisymmetric Turbulence Models in Water Hammer
,”
J. Hydraul. Eng.
,
128
(
10
), pp.
917
924
.
16.
Zhao
,
M.
, and
Ghidaoui
,
M. S.
,
2006
, “
Investigation of Turbulence Behavior in Pipe Transient Using a k-ε Model
,”
J. Hydraul. Res.
,
44
(
5
), pp.
682
692
.
17.
Raisi
,
A.
,
Nourbakhsh
,
A.
, and
Raisee
,
M.
,
2009
, “
Unsteady Turbulent Pipe Flow Due to Water Hammer Using k-ω Turbulence Model
,”
J. Hydraul. Res.
,
47
(
4
), pp.
429
437
.
18.
Cebeci
,
T.
, and
Smith
,
A. M. O.
,
1974
,
Analysis of Turbulent Boundary Layers
,
Academic Press
,
New York
.
19.
Kita
,
Y.
,
Adachi
,
Y.
, and
Hirose
,
K.
,
1980
, “
Periodically Oscillating Turbulent Flow in a Pipe
,”
Bull. JSME
,
23
(
179
), pp.
656
664
.
20.
Baldwin
,
B. S.
, and
Lomax
,
H.
,
1978
, “
Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows
,”
16th Aerospace Sciences Meeting
, Huntsville, AL, Jan. 16–18, pp.
1
8
.
21.
Fan
,
S.
,
Lakshminarayana
,
B.
, and
Barnett
,
M.
,
1993
, “
Low-Reynolds-Number Model for Unsteady Turbulent Boundary-Layer Flows
,”
AIAA J.
,
31
(
10
), pp.
1777
1784
.
22.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
23.
Saemi
,
S.
,
Raisee
,
M.
,
Cervantes
,
M.
, and
Nourbakhsh
,
A.
,
2014
, “
Computation of Laminar and Turbulent Water Hammer Flows
,”
WCCM-ECCM-ECFD
2014 Congress: 11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI)
, Barcelona, Spain, July 20–25, pp.
5496
5507
.http://congress.cimne.com/iacm-eccomas2014/admin/files/fileabstract/a1099.pdf
24.
Jonsson
,
P. P.
,
Ramdal
,
J.
, and
Cervantes
,
M. J.
,
2012
, “
Development of the Gibson Method-Unsteady Friction
,”
J. Flow Meas. Inst.
,
23
, pp.
19
25
.
25.
Saemi
,
S. D.
,
Cervantes
,
M.
,
Raisee
,
M.
, and
Nourbakhsh
,
A.
,
2017
, “
Numerical Investigation of the Pressure-Time Method
,”
J. Flow Meas. Inst.
,
55
, pp.
44
58
.
26.
Shuy
,
E. B.
,
1996
, “
Wall Shear Stress in Accelerating and Decelerating Turbulent Pipe Flows
,”
J. Hydraul. Res.
,
34
(
2
), pp.
173
183
.
27.
He
,
S.
, and
Jackson
,
J. D.
,
2000
, “
A Study of Turbulence Under Conditions of Transient Flow in a Pipe
,”
J. Fluid Mech.
,
408
, pp.
1
38
.
28.
He
,
S.
,
Ariyaratne
,
C.
, and
Vardy
,
A. E.
,
2008
, “
A Computational Study of Wall Friction and Turbulence Dynamics in Accelerating Pipe Flows
,”
Comput. Fluids
,
37
(
6
), pp.
674
689
.
29.
Ariyaratne
,
C.
,
He
,
S.
, and
Vardy
,
A. E.
,
2010
, “
Wall Friction and Turbulence Dynamics in Decelerating Pipe Flows
,”
J. Hydraul. Res.
,
48
(
6
), pp.
810
821
.
30.
Seddighi
,
M.
,
He
,
S.
,
Orlandi
,
P.
, and
Vardy
,
A. E.
,
2011
, “
A Comparative Study of Turbulence in Ramp-Up and Ramp-down Unsteady Flows
,”
Flow Turbul. Combust.
,
86
(
3–4
), pp.
439
454
.
31.
Saka
,
H.
,
Ueda
,
Y.
,
Nishihara
,
K.
,
Ilegbusi
,
O.
, and
Iguchi
,
M.
,
2015
, “
Transition Phenomena and Velocity Distribution in Constant-Deceleration Pipe Flow
,”
Exp. Ther. Fluid Sci.
,
62
, pp.
175
182
.
32.
Spencer
,
E. A.
,
Heitor
,
M. V.
, and
Castro
,
I. P.
,
1995
, “
Intercomparison of Measurements and Computations of Flow Through a Contraction and a Diffuser
,”
J. Flow Meas. Inst.
,
6
(
1
), pp.
3
14
.
33.
Korteweg
,
D. J.
,
1878
, “
Uber Die Fortpflanzungsgeschwindigkeit Des Schalles in Elastischen Rohren
,”
Ann. Phys. Chem.
,
241
(
12
), pp.
525
542
.
34.
Haaland
,
S. E.
,
1983
, “
Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow
,”
ASME J. Fluids Eng.
,
105
(
1
), pp.
89
90
.
35.
Churchill
,
S. W.
,
1977
, “
Friction-Factor Equation Spans All Fluid-Flow Regimes
,”
Chem. Eng.
,
84
(
24
), pp.
91
92
.
36.
Jain
,
A. K.
,
1976
, “
Accurate Explicit Equation for Friction Factor
,”
J. Hydraul. Div.
,
102
(
5
), pp.
674
677
.http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0025295
37.
Zigrang
,
D. J.
, and
Sylvester
,
N. D.
,
1982
, “
Explicit Approximations to the Solution of Colebrook's Friction Factor Equation
,”
AIChE J.
,
28
(
3
), pp.
514
515
.
You do not currently have access to this content.