The study of transient pressure waves in both low- and high-frequency domains has become a new research area to provide potentially high-resolution pipe fault detection methods. In previous research works, radial pressure waves were evidently observed after stopping the laminar pipe flows by valve closures, but the generation mechanism and components of these radial pressure waves are unclear. This paper intends to clarify this phenomenon. To this end, this study first addresses the inefficiencies of the current numerical scheme for the full two-dimensional (full-2D) water hammer model. The modified efficient full-2D model is then implemented into a practical reservoir-pipeline-valve (RPV) system, which is validated by the well-established analytical solutions. The generation mechanism and components of the radial pressure waves, caused by different flow perturbations from valve operations, in transient laminar flows are investigated systematically using this efficient full-2D model. The results indicate that nonuniform changes in the initial velocity profile form pressure gradients along the pipe radius. The existence of these radial pressure gradients is the driving force of the formation of radial flux and radial pressure waves. In addition, high radial modes can be excited, and the frequency of flow perturbations by valve oscillation can redistribute the energy entrapped in each high radial mode.

References

References
1.
Chaudhry
,
M. H.
,
2014
,
Applied Hydraulic Transients
,
Springer-Verlag
,
New York
.
2.
Duan
,
H. F.
,
Tung
,
Y. K.
, and
Ghidaoui
,
M. S.
,
2010
, “
Probabilistic Analysis of Transient Design for Water Supply Systems
,”
J. Water Resour. Plann. Manage.
,
136
(
6
), pp.
678
687
.
3.
Wylie
,
E. B.
,
Streeter
,
V. L.
, and
Suo
,
L. S.
,
1993
,
Fluid Transients in Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
4.
Ghidaoui
,
M. S.
,
2004
, “
On the Fundamental Equations of Water Hammer
,”
Urban Water J.
,
1
(
2
), pp.
71
83
.
5.
Ghidaoui
,
M. S.
,
Zhao
,
M.
,
McInnis
,
D. A.
, and
Axworthy
,
D. H.
,
2005
, “
A Review of Water Hammer Theory and Practice
,”
ASME Appl. Mech. Rev.
,
58
(
1
), pp.
49
76
.
6.
Vardy
,
A. E.
, and
Hwang
,
K. L.
,
1991
, “
A Characteristics Model of Transient Friction in Pipes
,”
J. Hydraul. Res.
,
29
(
5
), pp.
669
684
.
7.
Brunone
,
B.
,
Ferrante
,
M.
, and
Cacciamani
,
M.
,
2004
, “
Decay of Pressure and Energy Dissipation in Laminar Transient Flow
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
928
934
.
8.
Zhao
,
M.
, and
Ghidaoui
,
M. S.
,
2003
, “
Efficient Quasi-Two-Dimensional Model for Water Hammer Problems
,”
J. Hydraul. Eng.
,
129
(
12
), pp.
1007
1013
.
9.
Duan
,
H. F.
,
Ghidaoui
,
M. S.
, and
Tung
,
Y. K.
,
2009
, “
An Efficient Quasi-2D Simulation of Waterhammer in Complex Pipe Systems
,”
ASME J. Fluids Eng.
,
131
(
8
), p.
081105
.
10.
Pezzinga
,
G.
,
1999
, “
Quasi-2D Model for Unsteady Flow in Pipe Networks
,”
J. Hydraul. Eng.
,
125
(
7
), pp.
676
685
.
11.
Zielke
,
W.
,
1968
, “
Frequency-Dependent Friction in Transient Pipe Flow
,”
ASME J. Basic Eng.
,
90
(
1
), pp.
109
115
.
12.
Martins
,
N. M. C.
,
Brunone
,
B.
,
Meniconi
,
S.
,
Ramos
,
H. M.
, and
Covas
,
D. I. C.
,
2018
, “
Efficient Computational Fluid Dynamics Model for Transient Laminar Flow Modeling: Pressure Wave Propagation and Velocity Profile Changes
,”
ASME J. Fluids Eng.
,
140
(
1
), p.
011102
.
13.
Zhao
,
M.
,
Ghidaoui
,
M. S.
,
Louati
,
M.
, and
Duan
,
H. F.
,
2018
, “
Numerical Study of the Blockage Length Effect on the Transient Wave in Pipe Flows
,”
J. Hydraul. Res.
,
56
(2), pp. 245–255.
14.
Colombo
,
A. F.
,
Lee
,
P. J.
, and
Karney
,
B. W.
,
2009
, “
A Selective Literature Review of Transient-Based Leak Detection Methods
,”
J. Hydro-Environ. Res.
,
2
(
4
), pp.
212
227
.
15.
Lee
,
P. J.
,
Duan
,
H. F.
,
Ghidaoui
,
M. S.
, and
Karney
,
B. W.
,
2013
, “
Frequency Domain Analysis of Pipe Fluid Transient Behaviour
,”
J. Hydraul. Res.
,
51
(
6
), pp.
609
622
.
16.
Brunone
,
B.
,
1999
, “
Transient Test-Based Technique for Leak Detection in Outfall Pipes
,”
J. Water Resour. Plann. Manage.
,
125
(
5
), pp.
302
306
.
17.
Brunone
,
B.
,
Ferrante
,
M.
, and
Meniconi
,
S.
,
2008
, “
Portable Pressure Wave-Maker for Leak Detection and Pipe System Characterization
,”
J. Am. Water Works Assoc.
,
100
(
4
), pp.
108
116
.
18.
Covas
,
D.
,
Stoianov
,
I.
,
Ramos
,
H.
,
Graham
,
N.
, and
Maksimovic
,
C.
,
2004
, “
The Dynamic Effect of Pipe-Wall Viscoelasticity in Hydraulic Transients—Part I: Experimental Analysis and Creep Characterization
,”
J. Hydraul. Res.
,
42
(
5
), pp.
517
532
.
19.
Duan
,
H. F.
,
Lee
,
P. J.
,
Ghidaoui
,
M. S.
, and
Tung
,
Y. K.
,
2011
, “
Leak Detection in Complex Series Pipelines by Using the System Frequency Response Method
,”
J. Hydraul. Res.
,
49
(
2
), pp.
213
221
.
20.
Duan
,
H. F.
,
Lee
,
P. J.
,
Ghidaoui
,
M. S.
, and
Tung
,
Y. K.
,
2012
, “
Extended Blockage Detection in Pipelines by Using the System Frequency Response Analysis
,”
J. Water Resour. Plann. Manage.
,
138
(
1
), pp.
55
62
.
21.
Duan
,
H. F.
,
Lee
,
P. J.
,
Kashima
,
A.
,
Lu
,
J.
,
Ghidaoui
,
M. S.
, and
Tung
,
Y. K.
,
2013
, “
Extended Blockage Detection in Pipes Using the System Frequency Response: Analytical Analysis and Experimental Verification
,”
J. Hydraul. Eng.
,
139
(
7
), pp.
763
771
.
22.
Lee
,
P. J.
,
Lambert
,
M. F.
,
Simpson
,
A. R.
,
Vítkovský
,
J. P.
, and
Liggett
,
J. A.
,
2006
, “
Experimental Verification of the Frequency Response Method for Pipeline Leak Detection
,”
J. Hydraul. Res.
,
44
(
5
), pp.
693
707
.
23.
Lee
,
P. J.
,
Vítkovský
,
J. P.
,
Lambert
,
M. F.
,
Simpson
,
A. R.
, and
Liggett
,
J. A.
,
2007
, “
Leak Location in Pipelines Using the Impulse Response Function
,”
J. Hydraul. Res.
,
45
(
5
), pp.
643
652
.
24.
Liggett
,
J. A.
, and
Chen
,
L. C.
,
1994
, “
Inverse Transient Analysis in Pipe Networks
,”
J. Hydraul. Eng.
,
120
(
8
), pp.
934
955
.
25.
Meniconi
,
S.
,
Brunone
,
B.
,
Ferrante
,
M.
,
Capponi
,
C.
,
Carrettini
,
C. A.
,
Chiesa
,
C.
,
Segalini
,
D.
, and
Lanfranchi
,
E. A.
,
2015
, “
Anomaly Pre-Localization in Distribution–Transmission Mains by Pump Trip: Preliminary Field Tests in the Milan Pipe System
,”
J. Hydroinf.
,
17
(
3
), pp.
377
389
.
26.
Meniconi
,
S.
,
Duan
,
H. F.
,
Lee
,
P. J.
,
Brunone
,
B.
,
Ghidaoui
,
M. S.
, and
Ferrante
,
M.
,
2013
, “
Experimental Investigation of Coupled Frequency and Time-Domain Transient Test–Based Techniques for Partial Blockage Detection in Pipelines
,”
J. Hydraul. Eng.
,
139
(
10
), pp.
1033
1040
.
27.
Sattar
,
A. M.
,
Chaudhry
,
M. H.
, and
Kassem
,
A. A.
,
2008
, “
Partial Blockage Detection in Pipelines by Frequency Response Method
,”
J. Hydraul. Eng.
,
134
(
1
), pp.
76
89
.
28.
Stephens
,
M. L.
,
2008
, “
Transient Response Analysis for Fault Detection and Pipeline Wall Condition Assessment in Field Water Transmission and Distribution Pipelines and Networks
,”
Ph.D. thesis
, University of Adelaide, Adelaide, Australia.
29.
Lee
,
P. J.
,
Duan
,
H. F.
,
Tuck
,
J.
, and
Ghidaoui
,
M. S.
,
2015
, “
Numerical and Experimental Study on the Effect of Signal Bandwidth on Pipe Assessment Using Fluid Transients
,”
J. Hydraul. Eng.
,
141
(
2
), p.
04014074
.
30.
Mitra
,
A. K.
, and
Rouleau
,
W. T.
,
1985
, “
Radial and Axial Variations in Transient Pressure Waves Transmitted Through Liquid Transmission Lines
,”
ASME J. Fluids Eng.
,
107
(
1
), pp.
105
111
.
31.
Louati
,
M.
, and
Ghidaoui
,
M. S.
,
2017
, “
High-Frequency Acoustic Wave Properties in a Water-Filled Pipe—Part 1: Dispersion and Multi-Path Behaviour
,”
J. Hydraul. Res.
,
55
(
5
), pp.
613
631
.
32.
Louati
,
M.
, and
Ghidaoui
,
M. S.
,
2017
, “
High-Frequency Acoustic Wave Properties in a Water-Filled Pipe—Part 2: Range of Propagation
,”
J. Hydraul. Res.
,
55
(
5
), pp.
632
646
.
33.
Adamkowski
,
A.
, and
Lewandowski
,
M.
,
2006
, “
Experimental Examination of Unsteady Friction Models for Transient Pipe Flow Simulation
,”
ASME J. Fluids Eng.
,
128
(
6
), pp.
1351
1363
.
34.
Bergant
,
A.
,
Simpson
,
A. R.
, and
Vítkovský
,
J. P.
,
2001
, “
Developments in Unsteady Pipe Flow Friction Modelling
,”
J. Hydraul. Res.
,
39
(
3
), pp.
249
257
.
35.
Joukowsky
,
N. E.
,
1898
, “
Memoirs of the Imperial Academy Society of St. Petersburg
,”
Proc. Am. Water Works Assoc.
,
24
, pp.
341
424
.
36.
Riasi
,
A.
,
Nourbakhsh
,
A.
, and
Raisee
,
M.
,
2009
, “
Unsteady Velocity Profiles in Laminar and Turbulent Water Hammer Flows
,”
ASME J. Fluids Eng.
,
131
(
12
), p.
121202
.
You do not currently have access to this content.