This paper focuses on the lateral jetting commencing points associated with the peak pressure when an arc-curved jet impacts flat, concave, convex, and inclined solid surfaces, respectively. A theoretical method based on a shock wave background is used to establish models for these situations, which indicate that the critical radius for the initiation of lateral jetting is dependent on the combined actions of the jet velocity, surface shape, and surface angle. Arbitrary Lagrangian–Eulerian (ALE) formulations are then used to model the process of arc-curved jets impacting varied solid surfaces. The numeric simulation results are found to be in good agreement with the theoretical models.
Issue Section:
Fundamental Issues and Canonical Flows
References
1.
Cook
, S. S.
, 1928
, “Erosion by Water-Hammer
,” Proc. R. Soc. A
, 119
(783
), pp. 481
–488
.2.
Hsu
, C. Y.
, Liang
, C. C.
, Teng
, T. L.
, and Nguyen
, A. T.
, 2013
, “A Numerical Study on High-Speed Water Jet Impact
,” Ocean Eng.
, 72
(4
), pp. 98
–106
.3.
Dehkhoda
, S.
, and Hood
, M.
, 2014
, “The Internal Failure of Rock Samples Subjected to Pulsed Water Jet Impacts
,” Int. J. Rock Mech. Min. Sci.
, 66
(1
), pp. 91
–96
.4.
Dyment
, A.
, 2015
, “Compressible Liquid Impact against a Rigid Body
,” ASME J. Fluids Eng.
, 137
(3
), p. 031102.5.
Lu
, Y.
, 2017
, “Laboratory Study on the Rising Temperature of Spontaneous Combustion in Coal Stockpiles and a Paste Foam Suppression Technique
,” Energy Fuels
, 31
(7
), pp. 7290
–7298
.6.
Lu
, Y.
, Huang
, F.
, Liu
, X.
, and Ao
, X.
, 2015
, “On the Failure Pattern of Sandstone Impacted by High-Velocity Water Jet
,” Int. J. Impact Eng.
, 76
, pp. 67
–74
.7.
Xu
, J.
, Xie
, J.
, He
, X.
, and Liu
, Q.
, 2017
, “Water Drop Impacts on a Single-Layer of Mesh Screen Membrane: Effect of Water Hammer Pressure and Advancing Contact Angles
,” Exp. Therm. Fluid Sci.
, 82
(X
), pp. 83
–93
.8.
Bowden
, F. P.
, and Field
, J. E.
, 1964
, “The Brittle Fracture of Solids by Liquid Impact, by Solid Impact, and by Shock
,” Proc. R. Soc. A
, 282
(1390
), pp. 331
–352
.9.
Glenn
, L. A.
, 1974
, “On the Dynamics of Hypervelocity Liquid Jet Impact on a Flat Rigid Surface
,” Z. Für Angew. Math. Phys. Zamp
, 25
(3
), pp. 383
–398
.10.
Han
, Y.
, Xie
, Y.
, and Zhang
, D.
, 2012
, “Numerical Study on High-Speed Impact Between a Water Droplet and a Deformable Solid Surface
,” ASME
Paper No. GT2012-69700.11.
Cerquaglia
, M. L.
, Deliége
, G.
, Boman
, R.
, Papeleux
, L.
, and Ponthot
, J. P.
, 2017
, “The Particle Finite Element Method for the Numerical Simulation of Bird Strike
,” Int. J. Impact Eng.
, 109
, pp. 1
–13
.12.
Huang
, Y. C.
, Hammitt
, F. G.
, and Yang
, W. J.
, 1973
, “Hydrodynamic Phenomena During High-Speed Collision Between Liquid Droplet and Rigid Plane
,” ASME J. Fluids Eng.
, 95
(2
), pp. 276
–292
.13.
Hwang
, J. B. G.
, and Hammitt
, F. G.
, 1977
, “High Speed Impact Between Curved Liquid Surface and Rigid Flat Surface
,” ASME J. Fluids Eng.
, 99
(2
), pp. 396
–404
.14.
Xiong
, J.
, Koshizuka
, S.
, and Sakai
, M.
, 2011
, “Investigation of Droplet Impingement Onto Wet Walls Based on Simulation Using Particle Method
,” J. Nucl. Sci. Technol.
, 48
(1
), pp. 145
–153
.15.
Wang
, F.
, Wang
, R.
, Zhou
, W.
, and Chen
, G.
, 2017
, “Numerical Simulation and Experimental Verification of the Rock Damage Field Under Particle Water Jet Impacting
,” Int. J. Impact Eng.
, 102
, pp. 169
–179
.16.
Haller, K. K.,
Poulikakos
, D.
, Ventikos
, Y.
, and Monkewitz
, P.
, 2003
, “Shock Wave Formation in Droplet Impact on a Rigid Surface: Lateral Liquid Motion and Multiple Wave Structure in the Contact Line Region
,” J. Fluid Mech.
, 490
, pp. 1
–14
.17.
Sanada
, T.
, Ando
, K.
, and Colonius
, T.
, 2011
, “A Computational Study of High Speed Droplet Impact
,” Fluid Dyn. Mater. Process.
, 7
(4
), pp. 329
–340
.18.
Xu
, X.
, Ouyang
, J.
, Jiang
, T.
, and Li
, Q.
, 2014
, “Numerical Analysis of the Impact of Two Droplets With a Liquid Film Using an Incompressible SPH Method
,” J. Eng. Math.
, 85
(1
), pp. 35
–53
.19.
Obara
, T.
, Bourne
, N. K.
, and Field
, J. E.
, 1995
, “Liquid-Jet Impact on Liquid and Solid Surfaces
,” Wear
, 186–187
(95
), pp. 388
–394
.20.
Liu
, J.
, Vu
, H.
, Yoon
, S. S.
, Jepsen
, R. A.
, and Aguilar
, G.
, 2010
, “Splashing Phenomena During Liquid Droplet Impact
,” Atomization Sprays
, 20
(4
), pp. 297
–310
.21.
Li
, R.
, Ninokata
, H.
, and Mori
, M.
, 2011
, “A Numerical Study of Impact Force Caused by Liquid Droplet Impingement Onto a Rigid Wall
,” Prog. Nucl. Energy
, 53
(7
), pp. 881
–885
.22.
Field
, J. E.
, Lesser
, M. B.
, and Dear
, J. P.
, 1985
, “Studies of Two-Dimensional Liquid-Wedge Impact and Their Relevance to Liquid-Drop Impact Problems
,” Proc. R. Soc. A
, 401
(1821
), pp. 225
–249
.23.
Feng
, J. Q.
, 2017
, “A Computational Study of High-Speed Microdroplet Impact Onto a Smooth Solid Surface
,” J. Appl. Fluid Mech.
, 10
(1
), pp. 243
–256
.24.
Pittoni
, P. G.
, Lin
, Y. C.
, and Lin
, S. Y.
, 2014
, “The Impalement of Water Drops Impinging Onto Hydrophobic/Superhydrophobic Graphite Surfaces: The Role of Dynamic Pressure, Hammer Pressure and Liquid Penetration Time
,” Appl. Surf. Sci.
, 301
(10
), pp. 515
–524
.25.
Benson
, D. J.
, 1992
, “Momentum Advection on a Staggered Mesh
,” J. Comput. Phys.
, 100
(1
), pp. 143
–162
.26.
Hallquist
, J. O.
, 2007
, LS-DYNA Keyword User Manual Version 971
, Livermore Software Technology Corporation
, Livermore, CA
.27.
Liu
, G. R.
, and Liu
, M. B.
, 2003
, Smoothed Particle Hydrodynamics: A Mesh Free Particle Method
, World Scientific Publishing
, Singapore
.28.
Mabrouki
, T.
, Raissi
, K.
, and Cornier
, A.
, 2000
, “Numerical Simulation and Experimental Study of the Interaction Between a Pure High-Velocity Waterjet and Targets: Contribution to Investigate the Decoating Process
,” Wear
, 239
(2
), pp. 260
–273
.Copyright © 2018 by ASME
You do not currently have access to this content.