This paper focuses on the lateral jetting commencing points associated with the peak pressure when an arc-curved jet impacts flat, concave, convex, and inclined solid surfaces, respectively. A theoretical method based on a shock wave background is used to establish models for these situations, which indicate that the critical radius for the initiation of lateral jetting is dependent on the combined actions of the jet velocity, surface shape, and surface angle. Arbitrary Lagrangian–Eulerian (ALE) formulations are then used to model the process of arc-curved jets impacting varied solid surfaces. The numeric simulation results are found to be in good agreement with the theoretical models.

References

1.
Cook
,
S. S.
,
1928
, “
Erosion by Water-Hammer
,”
Proc. R. Soc. A
,
119
(
783
), pp.
481
488
.
2.
Hsu
,
C. Y.
,
Liang
,
C. C.
,
Teng
,
T. L.
, and
Nguyen
,
A. T.
,
2013
, “
A Numerical Study on High-Speed Water Jet Impact
,”
Ocean Eng.
,
72
(
4
), pp.
98
106
.
3.
Dehkhoda
,
S.
, and
Hood
,
M.
,
2014
, “
The Internal Failure of Rock Samples Subjected to Pulsed Water Jet Impacts
,”
Int. J. Rock Mech. Min. Sci.
,
66
(
1
), pp.
91
96
.
4.
Dyment
,
A.
,
2015
, “
Compressible Liquid Impact against a Rigid Body
,”
ASME J. Fluids Eng.
,
137
(
3
), p. 031102.
5.
Lu
,
Y.
,
2017
, “
Laboratory Study on the Rising Temperature of Spontaneous Combustion in Coal Stockpiles and a Paste Foam Suppression Technique
,”
Energy Fuels
,
31
(
7
), pp.
7290
7298
.
6.
Lu
,
Y.
,
Huang
,
F.
,
Liu
,
X.
, and
Ao
,
X.
,
2015
, “
On the Failure Pattern of Sandstone Impacted by High-Velocity Water Jet
,”
Int. J. Impact Eng.
,
76
, pp.
67
74
.
7.
Xu
,
J.
,
Xie
,
J.
,
He
,
X.
, and
Liu
,
Q.
,
2017
, “
Water Drop Impacts on a Single-Layer of Mesh Screen Membrane: Effect of Water Hammer Pressure and Advancing Contact Angles
,”
Exp. Therm. Fluid Sci.
,
82
(
X
), pp.
83
93
.
8.
Bowden
,
F. P.
, and
Field
,
J. E.
,
1964
, “
The Brittle Fracture of Solids by Liquid Impact, by Solid Impact, and by Shock
,”
Proc. R. Soc. A
,
282
(
1390
), pp.
331
352
.
9.
Glenn
,
L. A.
,
1974
, “
On the Dynamics of Hypervelocity Liquid Jet Impact on a Flat Rigid Surface
,”
Z. Für Angew. Math. Phys. Zamp
,
25
(
3
), pp.
383
398
.
10.
Han
,
Y.
,
Xie
,
Y.
, and
Zhang
,
D.
,
2012
, “
Numerical Study on High-Speed Impact Between a Water Droplet and a Deformable Solid Surface
,”
ASME
Paper No. GT2012-69700.
11.
Cerquaglia
,
M. L.
,
Deliége
,
G.
,
Boman
,
R.
,
Papeleux
,
L.
, and
Ponthot
,
J. P.
,
2017
, “
The Particle Finite Element Method for the Numerical Simulation of Bird Strike
,”
Int. J. Impact Eng.
,
109
, pp.
1
13
.
12.
Huang
,
Y. C.
,
Hammitt
,
F. G.
, and
Yang
,
W. J.
,
1973
, “
Hydrodynamic Phenomena During High-Speed Collision Between Liquid Droplet and Rigid Plane
,”
ASME J. Fluids Eng.
,
95
(
2
), pp.
276
292
.
13.
Hwang
,
J. B. G.
, and
Hammitt
,
F. G.
,
1977
, “
High Speed Impact Between Curved Liquid Surface and Rigid Flat Surface
,”
ASME J. Fluids Eng.
,
99
(
2
), pp.
396
404
.
14.
Xiong
,
J.
,
Koshizuka
,
S.
, and
Sakai
,
M.
,
2011
, “
Investigation of Droplet Impingement Onto Wet Walls Based on Simulation Using Particle Method
,”
J. Nucl. Sci. Technol.
,
48
(
1
), pp.
145
153
.
15.
Wang
,
F.
,
Wang
,
R.
,
Zhou
,
W.
, and
Chen
,
G.
,
2017
, “
Numerical Simulation and Experimental Verification of the Rock Damage Field Under Particle Water Jet Impacting
,”
Int. J. Impact Eng.
,
102
, pp.
169
179
.
16.
Haller, K. K.,
Poulikakos
,
D.
,
Ventikos
,
Y.
, and
Monkewitz
,
P.
,
2003
, “
Shock Wave Formation in Droplet Impact on a Rigid Surface: Lateral Liquid Motion and Multiple Wave Structure in the Contact Line Region
,”
J. Fluid Mech.
,
490
, pp.
1
14
.
17.
Sanada
,
T.
,
Ando
,
K.
, and
Colonius
,
T.
,
2011
, “
A Computational Study of High Speed Droplet Impact
,”
Fluid Dyn. Mater. Process.
,
7
(
4
), pp.
329
340
.
18.
Xu
,
X.
,
Ouyang
,
J.
,
Jiang
,
T.
, and
Li
,
Q.
,
2014
, “
Numerical Analysis of the Impact of Two Droplets With a Liquid Film Using an Incompressible SPH Method
,”
J. Eng. Math.
,
85
(
1
), pp.
35
53
.
19.
Obara
,
T.
,
Bourne
,
N. K.
, and
Field
,
J. E.
,
1995
, “
Liquid-Jet Impact on Liquid and Solid Surfaces
,”
Wear
,
186–187
(
95
), pp.
388
394
.
20.
Liu
,
J.
,
Vu
,
H.
,
Yoon
,
S. S.
,
Jepsen
,
R. A.
, and
Aguilar
,
G.
,
2010
, “
Splashing Phenomena During Liquid Droplet Impact
,”
Atomization Sprays
,
20
(
4
), pp.
297
310
.
21.
Li
,
R.
,
Ninokata
,
H.
, and
Mori
,
M.
,
2011
, “
A Numerical Study of Impact Force Caused by Liquid Droplet Impingement Onto a Rigid Wall
,”
Prog. Nucl. Energy
,
53
(
7
), pp.
881
885
.
22.
Field
,
J. E.
,
Lesser
,
M. B.
, and
Dear
,
J. P.
,
1985
, “
Studies of Two-Dimensional Liquid-Wedge Impact and Their Relevance to Liquid-Drop Impact Problems
,”
Proc. R. Soc. A
,
401
(
1821
), pp.
225
249
.
23.
Feng
,
J. Q.
,
2017
, “
A Computational Study of High-Speed Microdroplet Impact Onto a Smooth Solid Surface
,”
J. Appl. Fluid Mech.
,
10
(
1
), pp.
243
256
.
24.
Pittoni
,
P. G.
,
Lin
,
Y. C.
, and
Lin
,
S. Y.
,
2014
, “
The Impalement of Water Drops Impinging Onto Hydrophobic/Superhydrophobic Graphite Surfaces: The Role of Dynamic Pressure, Hammer Pressure and Liquid Penetration Time
,”
Appl. Surf. Sci.
,
301
(
10
), pp.
515
524
.
25.
Benson
,
D. J.
,
1992
, “
Momentum Advection on a Staggered Mesh
,”
J. Comput. Phys.
,
100
(
1
), pp.
143
162
.
26.
Hallquist
,
J. O.
,
2007
,
LS-DYNA Keyword User Manual Version 971
,
Livermore Software Technology Corporation
,
Livermore, CA
.
27.
Liu
,
G. R.
, and
Liu
,
M. B.
,
2003
,
Smoothed Particle Hydrodynamics: A Mesh Free Particle Method
,
World Scientific Publishing
,
Singapore
.
28.
Mabrouki
,
T.
,
Raissi
,
K.
, and
Cornier
,
A.
,
2000
, “
Numerical Simulation and Experimental Study of the Interaction Between a Pure High-Velocity Waterjet and Targets: Contribution to Investigate the Decoating Process
,”
Wear
,
239
(
2
), pp.
260
273
.
You do not currently have access to this content.