Complex energy conversion and energy dissipation occur in pump-turbines during the load rejection process. However, the underlying fluid mechanism is not clear. In order to solve these problems, in this study, a three-dimensional (3D) transient turbulent flow in a pump-turbine, with clearance during the load rejection process, was simulated using the method of coupling of the rigid rotor motion with flow and dynamic mesh technology. The simulated rotational speed shows good agreement with the experimental data. Most of the differences of rotational speed between simulations and experiments are very small and lower than 5%. Based on the numerical simulation, the energy conversion process, loss distribution, and flow mechanism in a pump-turbine were analyzed using the method of coupling of the entropy production analysis with the flow analysis. The results indicate that the load rejection process of a pump-turbine is an energy-dissipation process where the energy is converted among various energy forms. After load rejection, the hydraulic loss in the reverse pump process distributes primarily in the stay/guide vanes (GV), the vaneless space, and near draft tube inlet. While the hydraulic losses in the runaway process and the braking process are distributed mainly in the elbow section of the draft tube, the clearance of runner (RN), and the vaneless space, the hydraulic losses are mainly caused by viscous dissipation effects of the vortex flows, including the flow separation vortices, the shedding vortices of flow wake, the secondary flow, and the backflow.

References

References
1.
Zhang
,
Y. N.
,
Zhang, Y. N.
, and
Wu
,
Y. L.
,
2016
, “
A Review of Rotating Stall in Reversible Pump Turbine
,”
Proc. Inst. Mech. Eng., Part C
,
231
(
7
), pp.
1181
1204
.
2.
Li
,
D. Y.
,
Wang
,
H. J.
,
Xiang
,
G. M.
,
Gong
,
R. Z.
,
Wei
,
X. Z.
, and
Liu
,
Z. S.
,
2015
, “
Unsteady Simulation and Analysis for Hump Characteristics of a Pump Turbine Model
,”
Renewable Energy
,
77
, pp.
32
42
.
3.
Li
,
D. Y.
,
Gong
,
R. Z.
,
Wang
,
H. J.
,
Wei
,
X. Z.
,
Liu
,
Z. S.
, and
Qin
,
D. Q.
,
2015
, “
Numerical Investigation on Transient Flow of a High Head Low Specific Speed Pump-Turbine in Pump Mode
,”
J. Renewable Sustainable Energy
,
7
(
6
), p. 063111.
4.
Li
,
D. Y.
,
Gong
,
R. Z.
,
Wang
,
H. J.
,
Xiang
,
G. M.
,
Wei
,
X. Z.
, and
Liu
,
Z. S.
,
2015
, “
Dynamic Analysis on Pressure Fluctuation in Vaneless Region of a Pump Turbine
,”
Sci. China Technol. Sci.
,
58
(
5
), pp.
813
824
.
5.
Walseth
,
E.
,
Nielsen
,
T.
, and
Svingen
,
B.
,
2016
, “
Measuring the Dynamic Characteristics of a Low Specific Speed Pump-Turbine Model
,”
Energies
,
9
(
3
), p.
199
.
6.
Côté
,
P.
,
Dumas
,
G.
,
Moisan
,
É.
, and
Boutetblais
,
G.
,
2014
, “
Numerical Investigation of the Flow Behavior Into a Francis Runner During Load Rejection
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
3
), p.
032023
.
7.
Hosseinimanesh
,
H.
,
Vu
,
T. C.
,
Devals
,
C.
,
Nennemann
,
B.
, and
Guibault
,
F.
,
2014
, “
A Steady-State Simulation Methodology for Predicting Runaway Speed in Francis Turbines
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
3
), p.
032027
.
8.
Fortin
,
M.
,
Houde
,
S.
, and
Deschênes
,
C.
,
2014
, “
Validation of Simulation Strategies for the Flow in a Model Propeller Turbine During a Runaway Event
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
3
), p.
032026
.
9.
Liu
,
J. T.
,
2011
, “
Numerical Simulation of the Transient Flow in a Radial Flow Pump During Stopping Period
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111101
.
10.
Liu
,
J. T.
,
Liu
,
S. H.
,
Sun
,
Y. K.
,
Jiao
,
L.
,
Wu
,
Y. L.
, and
Wang
,
L. Q.
,
2013
, “
Three-Dimensional Flow Simulation of Transient Power Interruption Process of a Prototype Pump-Turbine at Pump Mode
,”
J. Mech. Sci. Technol.
,
27
(
5
), pp.
1305
1312
.
11.
Zhang
,
X. X.
,
Cheng
,
Y. G.
,
Xia
,
L. S.
,
Yang
,
J. D.
, and
Qian
,
Z. D.
,
2016
, “
Looping Dynamic Characteristics of a Pump-Turbine in the S-Shaped Region During Runaway
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091102
.
12.
Amiri
,
K.
,
Mulu
,
B.
,
Raisee
,
M.
, and
Cervantes
,
M. J.
,
2016
, “
Unsteady Pressure Measurements on the Runner of a Kaplan Turbine During Load Acceptance and Load Rejection
,”
J. Hydraul. Res.
,
54
(
1
), pp.
56
73
.
13.
Zhang
,
Y. N.
,
Chen
,
T.
,
Li
,
J. W.
, and
Yu
,
J. X.
,
2017
, “
Experimental Study of Load Variations on Pressure Fluctuations in a Prototype Reversible Pump Turbine in Generating Mode
,”
ASME J. Fluids Eng.
,
139
(
7
), p.
074501
.
14.
Trivedi
,
C.
,
Cervantes
,
M. J.
,
Gandhi
,
B. K.
, and
Dahlhaug
,
O. G.
,
2014
, “
Transient Pressure Measurements on a High Head Model Francis Turbine During Emergency Shutdown, Total Load Rejection, and Runaway
,”
ASME J. Fluids Eng.
,
136
(
12
), p. 121107.
15.
Trivedi
,
C.
,
Gandhi
,
B.
, and
Michel
,
C. J.
,
2013
, “
Effect of Transients on Francis Turbine Runner Life: A Review
,”
J. Hydraul. Res.
,
51
(
2
), pp.
121
132
.
16.
Casartelli
,
E.
,
Mangani
,
L.
,
Romanelli
,
G.
, and
Staubli
,
T.
,
2014
, “
Transient Simulation of Speed-No Load Conditions With an Open-Source Based C++ Code
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
3
), p.
32029
.
17.
Hosseinimanesh
,
H.
,
Devals
,
C.
,
Nennemann
,
B.
,
Reggio
,
M.
, and
Guibault
,
F.
,
2017
, “
A Numerical Study of Francis Turbine Operation at No-Load Condition
,”
ASME J. Fluids Eng.
,
139
(
1
), p.
011104
.
18.
Nennemann
,
B.
,
Morissette
,
J. F.
,
Chamberlandlauzon
,
J.
,
Monette
,
C.
,
Braun
,
O.
,
Melot
,
M.
,
Coutu
,
A.
,
Nicolle
,
J.
, and
Giroux
,
A. M.
,
2014
, “
Challenges in Dynamic Pressure and Stress Predictions at No-Load Operation in Hydraulic Turbines
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
3
), p.
032055
.
19.
Gong
,
R. Z.
,
Wang
,
H. J.
,
Chen
,
L. X.
,
Li
,
D. Y.
,
Zhang
,
H. C.
, and
Wei
,
X. Z.
,
2013
, “
Application of Entropy Production Theory to Hydro-Turbine Hydraulic Analysis
,”
Sci. China Technol. Sci.
,
56
(
7
), pp.
1636
1643
.
20.
Li
,
D. Y.
,
Gong
,
R. Z.
,
Wang
,
H. J.
,
Xiang
,
G. M.
,
Wei
,
X. Z.
, and
Qin
,
D. Q.
,
2016
, “
Entropy Production Analysis for Hump Characteristics of a Pump Turbine Model
,”
Chin. J. Mech. Eng.
,
29
(
4
), pp.
803
812
.
21.
Li
,
D. Y.
,
Wang
,
H. J.
,
Qin
,
Y. L.
,
Wei
,
X. Z.
, and
Qin, D. Q.
,
2018
, “
Numerical Simulation of Hysteresis Characterisitc in the Hump Region of a Pump-Turbine Model
,”
Renewable Energy
,
115
, pp.
433
447
.
22.
Li
,
D. Y.
,
Wang
,
H. J.
,
Qin
,
Y. L.
,
Han
,
L.
,
Wei
,
X. Z.
, and
Qin
,
D. Q.
,
2017
, “
Entropy Production Analysis of Hysteresis Characteristic of a Pump-Turbine Model
,”
Energy Convers. Manage.
,
149
, pp.
175
191
.
23.
Dhakal
,
T. P.
,
Walters
,
D. K.
, and
Strasser
,
W.
,
2014
, “
Numerical Study of Gas-Cyclone Airflow: An Investigation of Turbulence Modelling Approaches
,”
Int. J. Comput. Fluid Dyn.
,
28
(
1–2
), pp.
1
15
.
24.
ANSYS,
2012
,
ANSYS FLUENT 14.5 Theory Guide
,
ANSYS
, Inc., Canonsburg, PA, pp.
724
746
.
25.
Zhang
,
L.
, and
Zhou
,
D.
,
2013
, “
CFD Research on Runaway Transient of Pumped Storage Power Station Caused by Pumping Power Failure
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
52
(
5
), p.
52027
.
26.
Strasser
,
W.
,
2007
, “
CFD Investigation of Gear Pump Mixing Using Deforming/Agglomerating Mesh
,”
ASME J. Fluids Eng.
,
129
(
4
), pp.
476
484
.
27.
Zhang
,
Y. N.
,
Liu
,
K. H.
,
Xian
,
H. Z.
, and
Du
,
X. Z.
,
2017
, “
A Review of Methods for Vortex Identification in Hydroturbines
,”
Renewable Sustainable Energy Rev.
,
81
(
Pt. 1
), pp.
1269
1285
.
28.
Li
,
D. Y.
,
Han
,
L.
,
Wang
,
H. J.
,
Gong
,
R. Z.
,
Wei
,
X. Z.
, and
Qin
,
D. Q.
,
2017
, “
Flow Characteristics Prediction in Pump Mode of a Pump Turbine Using Large Eddy Simulation
,”
Arch. Proc. Inst. Mech. Eng. Part E
,
231
(
5
), pp.
961
977
.
You do not currently have access to this content.