Wave rotors are periodic-flow devices that provide dynamic pressure exchange and efficient energy transfer through internal pressure waves generated due to fast opening and closing of ports. Wave turbines are wave rotors with curved channels that can produce shaft work through change of angular momentum from inlet to exit. In the present work, conservation equations with averaging in the transverse directions are derived for wave turbines, and quasi-one-dimensional model for axial-channel non-steady flow is extended to account for blade curvature effects. The importance of inlet incidence is explained and the duct angle is optimized to minimize incidence loss for a particular boundary condition. Two different techniques are presented for estimating the work transfer between the gas and rotor due to flow turning, based on conservation of angular momentum and of energy. The use of two different methods to estimate the shaft work provides confidence in reporting of work output and confirms internal consistency of the model while it awaits experimental data for validation. The extended wave turbine model is used to simulate the flow in a three-port wave rotor. The work output is calculated for blades with varying curvature, including the straight axial channel as a reference case. The dimensional shaft work is reported for the idealized situation where all loss-generating mechanisms except flow incidence are absent, thus excluding leakage, heat transfer, friction, port opening time, and windage losses. The model developed in the current work can be used to determine the optimal wave turbine designs for experimental investment.

References

References
1.
Akbari
,
P.
,
Nalim
,
R.
, and
Mueller
,
N.
,
2006
, “
A Review of Wave Rotor Technology and Its Applications
,”
ASME J. Eng. Gas Turbines Power
,
128
(
4
), pp.
717
735
.
2.
Burghard
,
A.
,
1928
, “
Verfahren zur Verdichtung von Gasen (Method for the Compression of Gases)
,” German Patent No. 485386(1928).
3.
Meyer
,
A.
,
1947
, “
Recent Developments in Gas Turbines
,”
J. Mech. Eng.
,
69
(
4
), pp.
273
277
.
4.
Weber
,
H.
,
1995
,
Shock Wave Engine Design
, Wiley, Hoboken, NJ.
5.
Akbari
,
P.
, and
Mueller
,
N.
,
2005
, “
Wave Rotor Research Program at Michigan State University
,”
AIAA
Paper No. 2005-3844.
6.
Mataczynski
,
M. R.
,
Paxson
,
D. E.
,
Polanka
,
M. D.
, and
Hoke
,
J.
,
2016
, “
Experimental Performance of a Small Scale Pressure Wave Supercharger
,”
AIAA
Paper No. AIAA 2016-0768.
7.
Mataczynski
,
M.
,
Paxson
,
D. E.
,
Hoke
,
J.
, and
Schauer
,
F.
,
2017
, “
Design and Testing of a Small Pressure Wave Supercharger for an Industrial Diesel Engine
,”
AIAA
Paper No. AIAA 2017-1624.
8.
Nalim
,
M. R.
,
Snyder
,
P. H.
, and
Kowalkowski
,
M.
,
2017
, “
Experimental Test, Model Validation, and Viability Assessment of a Wave-Rotor Constant-Volume Combustor
,”
J. Propul. Power
,
33
(
1
), pp.
163
175
.
9.
Mathur
,
A.
,
Shreeve
,
R. P.
, and
Eidelman
,
S.
,
1984
, “
Numerical Techniques for Wave Rotor Cycle Analysis
,” ASME Paper No. NPS67-84-007CR.
10.
Paxson
,
D. E.
,
1992
, “
A General Numerical Model for Wave Rotor Analysis
,” NASA Lewis Research Center, Cleveland, OH, Technical Report No.
92 TM 31484
.https://ntrs.nasa.gov/search.jsp?R=19920022240
11.
Paxson
,
D.
,
1998
, “
An Incidence Loss Model for Wave Rotors With Axially Aligned Passages
,”
AIAA
Paper No. AIAA-98-3251.
12.
Welch
,
G. E.
,
1996
, “
Two-Dimensional Computational Model for Wave Rotor Flow Dynamics
,”
ASME
Paper No. 96-GT-550.
13.
Wilson
,
J.
,
Welch
,
G.
, and
Paxson
,
D.
,
2007
, “
Experimental Results of Performance Tests on a Four-Port Wave Rotor
,”
AIAA
Paper No. AIAA 2007-1250.
14.
Wilson
,
J.
,
1998
, “
An Experimental Determination of Losses in a Three-Port Wave Rotor,” Transactions-American Society of Mechanical Engineers
,”
ASME J. Eng. Gas Turbines Power
,
120
(
4
), pp.
833
842
.
15.
Akbari
,
P.
,
Nalim
,
R.
,
Donovan
,
E. S.
, and
Snyder
,
P. H.
,
2008
, “
Leakage Assessment of Pressure-Exchange Wave Rotors
,”
J. Propul. Power
,
24
(
4
), pp.
732
740
.
16.
Akbari
,
P.
,
Nalim
,
R.
, and
Snyder
,
P.
,
2006
, “
Numerical Simulation and Design of a Combustion Wave Rotor for Deflagrative and Detonative Propagation
,”
AIAA
Paper No. AIAA 2006-5134.
17.
Elharis
,
T.
,
Wijeyakulasuriya
,
S.
, and
Nalim
,
M.
,
2011
, “
A Two-Step Reaction Model for Stratified-Charge Combustion in Wave-Rotors
,”
AIAA
Paper No. AIAA 2011-5748.
18.
Elharis
,
T.
,
2011
, “
A Multi-Step Reaction Model for Stratified Charge Combustion in Wave Rotors
,”
Masters dissertation
, Proquest, Ann Arbor, MI.https://docs.lib.purdue.edu/dissertations/AAI1501942/
19.
Jagannath
,
R. R.
,
Bane
,
S. P. M.
, and
Nalim
,
M. R.
,
2015
, “
Wave Rotor Combustor Turbine Model Development
,”
AIAA
Paper No. AIAA 2015-4188.
20.
Karimi
,
A.
, and
Nalim
,
M. R.
,
2016
, “
Ignition by Hot Transient Jets in Confined Mixtures of Gaseous Fuels and Air
,”
J. Combust.
,
2016
, p. 9565839.
21.
Karimi
,
A.
,
Rajagopal
,
M.
, and
Nalim
,
M. R.
,
2014
, “
Traversing Hot-Jet Ignition in a Constant-Volume Combustor
,”
ASME J. Eng. Gas Turbines Power
,
136
(
4
), p.
041506
.
22.
Kilchyk
,
V.
,
Nalim
,
M. R.
, and
Merkle
,
C.
,
2013
, “
Scaling Interface Length Increase Rates in Richtmyer–Meshkov Instabilities
,”
ASME J. Fluids Eng.
,
135
(
3
), p. 0
31203
.
23.
Matsutomi
,
Y.
,
Meyer
,
S.
,
Wijeyakulasuriya
,
S.
,
Izzy
,
Z.
,
Nalim
,
M.
,
Shimo
,
M.
,
Kowalkowski
,
M.
, and
Snyder
,
P.
,
2010
, “
Experimental Investigation on the Wave Rotor Constant Volume Combustor
,”
AIAA
Paper No. AIAA 2010-7043.
24.
Nalim
,
M. R.
,
1999
, “
Assessment of Combustion Modes for Internal Combustion Wave Rotors
,”
ASME J. Eng. Gas Turbines Power
,
121
(
2
), pp.
265
271
.
25.
Nalim
,
M. R.
,
Li
,
H.
, and
Akbari
,
P.
,
2009
, “
Air-Standard Aerothermodynamic Analysis of Gas Turbine Engines With Wave Rotor Combustion
,”
ASME J. Eng. Gas Turbines Power
,
131
(
5
), p. 0
54506
.
26.
Nalim
,
M. R.
,
2000
, “
Longitudinally Stratified Combustion in Wave Rotors
,”
J. Propul. Power
,
16
(
6
), pp.
1060
1068
.
27.
Nalim
,
M. R.
,
2002
, “
Thermodynamic Limits of Work and Pressure Gain in Combustion and Evaporation Processes
,”
J. Propul. Power
,
18
(
6
), pp.
1176
1182
.
28.
Welch
,
G. E.
, and
Larosiliere
,
L.
,
1997
, “
Passage-Averaged Description of Wave Rotor Flow
,”
AIAA
Paper No. AIAA 1997-3144.
29.
Welch
,
G. E.
, and
Paxson
,
D. E.
,
1998
, “
Wave Turbine Analysis Tool Development
,”
AIAA
Paper No. AIAA 1998-3402.
30.
Larosiliere
,
L. M.
,
1995
, “
Wave Rotor Charging Process—Effects of Gradual Opening and Rotation
,”
J. Propul. Power
,
11
(
1
), pp.
178
184
.
You do not currently have access to this content.