Wire and nonparallel plate electrode-type electrostatic air accelerators have attracted significant interest. The physical process involved in using accelerators is complicated. Moreover, mechanisms are unclear, especially for accelerators with double- and multiwire electrodes. In this study, the two-dimensional (2D) model of a wire–nonparallel plate-type accelerator validated by experiments is established with a finite element method. Onset voltage, average current, and outlet average velocity are analyzed with respect to different parameters. Onset voltage is derived by the proposed quadratic regression extrapolation method. Moreover, current is affected by interference and discharge effects, while velocity is also influenced by the suction effect. For the single-wire electrode, high wind speed can be obtained by either increasing channel slope or placing the wire near the entry section. For the double-wire electrode, velocity can be further increased when one of the wires is placed near the inlet and the distance between the two wires is widened. Comparatively, the velocity of the three-wire electrode is higher with larger gaps between wires and stronger discharge effect. The highest velocity is obtained by the four-wire electrode. Comparisons indicate that higher velocity can be obtained with weaker interference effect, stronger suction effect, and intensified discharge effect. Optimum parameter combinations are considered by the Taguchi method. Consequently, velocity can be enhanced by more than 39% after optimization compared with the reference design.

References

References
1.
Lin
,
J. H.
,
Lin
,
S. C.
, and
Lai
,
F. C.
,
2018
, “
Performance of an Electrohydrodynamic Gas Pump Fitted Within a Nozzle
,”
J. Electrostat.
,
91
, pp.
1
8
.
2.
Taleghani
,
A. S.
,
Shadaram
,
A.
,
Mirzaei
,
M.
, and
Abdolahipour
,
S.
,
2018
, “
Parametric Study of a Plasma Actuator at Unsteady Actuation by Measurements of the Induced Flow Velocity for Flow Control
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
(
4
), p.
173
.
3.
Wang
,
S.
,
Zhang
,
J.
,
Kong
,
L.
,
Qu
,
Z.
, and
Tao
,
W.
,
2017
, “
An Numerical Investigation on the Cooling Capacity of Needle-Ring Type Electrostatic Fluid Accelerators for Round Plate With Uniform and Non-Uniform Heat Flux
,”
Int. J. Heat Mass Transfer
,
113
, pp.
1
5
.
4.
Shin
,
D. H.
,
Baek
,
S. H.
, and
Ko
,
H. S.
,
2018
, “
Analysis of Counter Flow of Corona Wind for Heat Transfer Enhancement
,”
Heat Mass Transfer
,
54
(
3
), pp.
841
854
.
5.
Defraeye
,
T.
, and
Martynenko
,
A.
,
2018
, “
Future Perspectives for Electrohydrodynamic Drying of Biomaterials
,”
Drying Technol.
,
36
(
1
), pp.
1
10
.
6.
Chen
,
Y.
, and
Martynenko
,
A.
,
2018
, “
Combination of Hydrothermodynamic (HTD) Processing and Different Drying Methods for Natural Blueberry Leather
,”
LWT-Food Sci. Technol.
,
87
, pp.
470
477
.
7.
Park
,
D. G.
,
Chung
,
S. H.
, and
Cha
,
M. S.
,
2017
, “
Visualization of Ionic Wind in Laminar Jet Flames
,”
Combust Flame
,
184
, pp.
246
248
.
8.
Kim
,
G. T.
,
Park
,
D. G.
,
Cha
,
M. S.
,
Park
,
J.
, and
Chung
,
S. H.
,
2017
, “
Flow Instability in Laminar Jet Flames Driven by Alternating Current Electric Fields
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
4175
4182
.
9.
Laohalertdecha
,
S.
,
Naphon
,
P.
, and
Wongwises
,
S.
,
2007
, “
A Review of Electrohydrodynamic Enhancement of Heat Transfer
,”
Renewable Sustainable Energy Rev
,
11
(
5
), pp.
858
876
.
10.
Fylladitakis
,
E. D.
,
Theodoridis
,
M. P.
, and
Moronis
,
A. X.
,
2014
, “
Review on the History, Research, and Applications of Electrohydrodynamics
,”
IEEE Trans. Plasma Sci.
,
42
(
2
), pp.
358
375
.
11.
Lakeh
,
R. B.
, and
Molki
,
M.
,
2010
, “
Patterns of Airflow in Circular Tubes Caused by a Corona Jet With Concentric and Eccentric Wire Electrodes
,”
ASME J. Fluids Eng.
,
132
(
8
), p.
081201
.
12.
Hasnain
,
S. M.
,
Bakshi
,
A.
,
Selvaganapathy
,
P. R.
, and
Chan
,
Y. C.
,
2011
, “
On the Modeling and Simulation of Ion Drag Electrohydrodynamic Micropumps
,”
ASME J. Fluids Eng.
,
133
(
5
), pp.
2444
2453
.
13.
Qiu
,
W.
,
Xia
,
L.
,
Tan
,
X.
, and
Yang
,
L.
,
2010
, “
The Velocity Characteristics of a Serial-Staged EHD Gas Pump in Air
,”
IEEE Trans. Plasma Sci.
,
38
(
10
), pp.
2848
2853
.
14.
Zhao
,
L.
, and
Adamiak
,
K.
,
2005
, “
EHD Flow in Air Produced by Electric Corona Discharge in Pin–Plate Configuration
,”
J. Electrostat.
,
63
(
3–4
), pp.
337
350
.
15.
Komeili
,
B.
,
Chang
,
J. S.
,
Harvel
,
G. D.
,
Ching
,
C. Y.
, and
Brocilo
,
D.
,
2008
, “
Flow Characteristics of Wire-Rod Type Electrohydrodynamic Gas Pump Under Negative Corona Operations
,”
J. Electrostat.
,
66
(
5–6
), pp.
342
353
.
16.
Elagin
,
I. A.
,
Ashikhmin
,
I. A.
,
Samusenko
,
A. V.
,
Stishkov
,
Y. K.
, and
Yakovlev
,
V. V.
,
2016
, “
Computer Simulation of Plate Cooling by Ionic Wind From the Wire Electrode and Its Experimental Verification
,”
IEEE International Conference on Dielectrics
(
ICD
), Montpellier, France, July 3–7, pp. 151–154.
17.
Elagin
,
I. A.
,
Yakovlev
,
V. V.
,
Ashikhmin
,
I. A.
, and
Stishkov
,
Y. K.
,
2016
, “
Experimental Investigation of Cooling of a Plate by Ionic Wind From a Corona-Forming Wire Electrode
,”
Tech. Phys.
,
61
(
8
), pp.
1214
1219
.
18.
Owsenek
,
B. L.
, and
Seyed-Yagoobi
,
J.
,
1997
, “
Theoretical and Experimental Study of Electrohydrodynamic Heat Transfer Enhancement Through Wire-Plate Corona Discharge
,”
ASME J. Heat Transfer
,
119
(
3
), pp. 604–610.
19.
Podlinski
,
J.
,
Niewulis
,
A.
, and
Mizeraczyk
,
J.
,
2009
, “
Electrohydrodynamic Flow in a Wire-Plate Non-Thermal Plasma Reactor Measured by 3D PIV Method
,”
Eur. Phys. J. D
,
54
(
2
), pp.
153
158
.
20.
Kasayapanand
,
N.
, and
Kiatsiriroat
,
T.
,
2005
, “
EHD Enhanced Heat Transfer in Wavy Channel
,”
Int. Commun. Heat Mass Transfer
,
32
(
6
), pp.
809
821
.
21.
Kasayapanand
,
N.
, and
Kiatsiriroat
,
T.
,
2007
, “
Numerical Modeling of the Electrohydrodynamic Effect to Natural Convection in Vertical Channels
,”
Int. Commun. Heat Mass Transfer
,
34
(
2
), pp.
162
175
.
22.
Kasayapanand
,
N.
,
2007
, “
Numerical Modeling of Natural Convection in Partially Open Square Cavities Under Electric Field
,”
Int. Commun. Heat Mass Transfer
,
34
(
5
), pp.
630
643
.
23.
Chang
,
J. S.
,
Tsubone
,
H.
,
Chun
,
Y. N.
,
Berezin
,
A. A.
, and
Urashima
,
K.
,
2009
, “
Mechanism of Electrohydrodynamically Induced Flow in a Wire-Non-Parallel Plate Electrode Type Gas Pump
,”
J. Electrostat.
,
67
(
2–3
), pp.
335
339
.
24.
Ghazanchaei
,
M.
,
Adamiak
,
K.
, and
Castle
,
G. P.
,
2015
, “
Predicted Flow Characteristics of a Wire-Nonparallel Plate Type Electrohydrodynamic Gas Pump Using the Finite Element Method
,”
J. Electrostat.
,
73
(
73
), pp.
103
111
.
25.
Tsubone
,
H.
,
Ueno
,
J.
,
Komeili
,
B.
,
Minami
,
S.
,
Harvel
,
G. D.
,
Urashima
,
K.
,
Ching
,
C. Y.
, and
Chang
,
J. S.
,
2008
, “
Flow Characteristics of Dc Wire-Non-Parallel Plate Electrohydrodynamic Gas Pumps
,”
J. Electrostat.
,
66
(
1–2
), pp.
115
121
.
26.
Chang
,
J. S.
,
Ueno
,
J.
,
Tsubone
,
H.
,
Harvel
,
G. D.
,
Minami
,
S.
, and
Urashima
,
K.
,
2007
, “
Electrohydrodynamically Induced Flow Direction in a Wire-Non-Parallel Plate Electrode Corona Discharge
,”
J. Phys. D: Appl. Phys.
,
40
(
17
), p.
5109
.
27.
Kocik
,
M.
,
Podliriski
,
J.
,
Niewulis
,
A.
,
Mizeraczyk
,
J.
,
Tsubone
,
H.
, and
Chang
,
J. S.
,
2008
, “
Particle Image Velocimetry Measurements of Wire-Non-Parallel Plate Induction Fan Type Electrohydrodynamic Gas Pump
,”
J. Phys.: Conf. Ser.
,
142
(1), p. 012061.
28.
Peek
,
F. W.
,
1920
,
Dielectric Phenomena in High Voltage Engineering
,
McGraw-Hill Book Company, Incorporated
, New York.
29.
Tirumala
,
R.
,
Li
,
Y.
,
Pohlman
,
D. A.
, and
Go
,
D. B.
,
2011
, “
Corona Discharges in Sub-Millimeter Electrode Gaps
,”
J. Electrostat.
,
69
(
1
), pp.
36
42
.
30.
Bian
,
X.
,
Wang
,
L.
,
Macalpine
,
J. K.
,
Guan
,
Z.
,
Hui
,
J.
, and
Chen
,
Y.
,
2010
, “
Positive Corona Inception Voltages and Corona Currents for Air at Various Pressures and Humidities
,”
IEEE Trans. Dielectr. Electr. Insul.
,
17
(
1
), pp.
63
70
.
31.
Taguchi
,
G.
,
1986
, “
Introduction to Quality Engineering
,”
Technomet
,
31
(
2
), pp.
255
256
.
32.
Wang
,
J. J.
,
Zhai
,
Z. Q.
,
Jing
,
Y. Y.
, and
Zhang
,
C. F.
,
2010
, “
Optimization Design of BCHP System to Maximize to Save Energy and Reduce Environmental Impact
,”
Energy
,
35
(
8
), pp.
3388
3398
.
You do not currently have access to this content.