In the boundary element method (BEM), the Galerkin weighting technique allows to obtain numerical solutions of a boundary integral equation (BIE), giving the Galerkin boundary element method (GBEM). In three-dimensional (3D) spatial domains, the nested double surface integration of GBEM leads to a significantly larger computational time for assembling the linear system than with the standard collocation method. In practice, the computational time is roughly an order of magnitude larger, thus limiting the use of GBEM in 3D engineering problems. The standard approach for reducing the computational time of the linear system assembling is to skip integrations whenever possible. In this work, a modified assembling algorithm for the element matrices in GBEM is proposed for solving integral kernels that depend on the exterior unit normal. This algorithm is based on kernels symmetries at the element level and not on the flow nor in the mesh. It is applied to a BIE that models external creeping flows around 3D closed bodies using second-order kernels, and it is implemented using OpenMP. For these BIEs, the modified algorithm is on average 32% faster than the original one.

References

References
1.
Power
,
H.
, and
Wrobel
,
L. C.
,
1995
,
Boundary Integral Methods in Fluid Mechanics
,
Computational Mechanics Publications
,
Southampton, UK
.
2.
D'Elía
,
J.
,
Storti
,
M. A.
, and
Idelsohn
,
S. R.
,
2000
, “
A Panel-Fourier Method for Free-Surface Flows
,”
ASME J. Fluids Eng.
,
122
(
2
), pp.
309
317
.
3.
Terravecchia
,
S.
,
2012
, “
Revisited Mixed-Value Method Via Symmetric BEM in the Substructuring Approach
,”
Eng. Anal. Boundary Elem.
,
36
(
12
), pp.
1865
1882
.
4.
Zhao
,
Z.
, and
Yuan
,
W.
,
2004
, “
Evaluation of Singular Integrals in the Symmetric Galerkin Boundary Element Method
,”
Adv. Eng. Software
,
35
(
12
), pp.
781
789
.
5.
Sutradhar
,
A.
,
Paulino
,
G. H.
, and
Gray
,
L. J.
,
2008
,
Symmetric Galerkin Boundary Element Method
,
Springer
,
Berlin
.
6.
Salvadori
,
A.
,
2010
, “
Analytical Integrations in 3D BEM for Elliptic Problems: Evaluation and Implementation
,”
Int. J. Numer. Methods Eng.
,
84
(
5
), pp.
505
542
.
7.
Alia
,
A.
,
Souli
,
M.
, and
Erchiqui
,
F.
,
2006
, “
Variational Boundary Element Acoustic Modelling Over Mixed Quadrilateral–Triangular Element Meshes
,”
Int. J. Numer. Methods Biomed. Eng.
,
22
(
7
), pp.
767
780
.
8.
Sievers
,
D.
,
Eibert
,
T. F.
, and
Hansen
,
V.
,
2005
, “
Correction to ‘On the Calculation of Potential Integrals for Linear Source Distributions on Triangular Domains'
,”
IEEE Trans. Antennas Propag.
,
53
(
9
), p. 3113.
9.
Carley
,
M. J.
,
2013
, “
Analytical Formulae for Potential Integrals on Triangles
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041008
.
10.
Taylor
,
D. J.
,
2003
, “
Accurate and Efficient Numerical Integration of Weakly Singulars Integrals in Galerkin EFIE Solutions
,”
IEEE Trans. Antennas Propag.
,
51
(
7
), pp.
1630
1637
.
11.
D'Elía
,
J.
,
Battaglia
,
L.
,
Cardona
,
A.
, and
Storti
,
M.
,
2011
, “
Full Numerical Quadrature of Weakly Singular Double Surface Integrals in Galerkin Boundary Element Methods
,”
Int. J. Numer. Methods Biomed. Eng.
,
27
(
2
), pp.
314
334
.
12.
Sarraf
,
S.
,
López
,
E.
,
Ríos Rodríguez
,
G.
, and
D'Elía
,
J.
,
2014
, “
Validation of a Galerkin Technique on a Boundary Integral Equation for Creeping Flow Around a Torus
,”
Comput. Appl. Math.
,
33
(
1
), pp.
63
80
.
13.
Iemma
,
U.
,
2010
, “
On the Use of a SIMD Vector Extension for the Fast Evaluation of Boundary Element Method Coefficients
,”
Adv. Eng. Software
,
41
(
3
), pp.
451
463
.
14.
Yu
,
G. Y.
,
2003
, “
Relationship Among Coefficient Matrices in Symmetric Galerkin Boundary Element Method for Two-Dimensional Scalar Problems
,”
ASME J. Appl. Mech.
,
70
(
4
), pp.
479
486
.
15.
Mukherjee
,
S.
,
Telukunta
,
S.
, and
Mukherjee
,
Y. X.
,
2005
, “
BEM Modeling of Damping Forces on MEMS With Thin Plates
,”
Eng. Anal. Boundary Elem.
,
29
(
11
), pp.
1000
1007
.
16.
Fachinotti
,
V.
,
Cardona
,
A.
,
D'Elía
,
J.
, and
Paquay
,
S.
,
2007
, “
BEM for the Analysis of Fluid Flow Around MEMS
,” Mecánica Computacional, Asociación Argentina de Mecánica Computacional (
AMCA
), Cordoba, Argentina, Oct., pp.
1104
1119
.https://www.researchgate.net/profile/Victor_Fachinotti/publication/228625310_BEM_for_the_analysis_of_fluid_flow_around_MEMS/links/0912f50770dcdef6ed000000/BEM-for-the-analysis-of-fluid-flow-around-MEMS.pdf?origin=publication_list
17.
Bandopadhyay
,
A.
,
Tripathi
,
D.
, and
Chakraborty
,
S.
,
2016
, “
Electroosmosis-Modulated Peristaltic Transport in Microfluidic Channels
,”
Phys. Fluids
,
28
(
5
), p.
052002
.
18.
Tripathi
,
D.
,
Brushan
,
S.
, and
Anwar Beg
,
O.
,
2016
, “
Transverse Magnetic Field Driven Modification in Unsteady Peristaltic Transport With Electrical Double Layer Effects
,”
Colloids Surf., A
,
506
, pp.
32
39
.
19.
Tripathi
,
D.
,
Yadav
,
A.
, and
Anwar Beg
,
O.
,
2017
, “
Electro-Kinetically Driven Peristaltic Transport of Viscoelastic Physiological Fluids Through a Finite Length Capillary: Mathematical Modeling
,”
Math. Biosci.
,
283
, pp.
155
168
.
20.
Diaz
,
J.
,
Muñoz Caro
,
C.
, and
Niño
,
A.
,
2012
, “
A Survey of Parallel Programming Models and Tools in the Multi and Many-Core Era
,”
IEEE Trans. Parallel Distrib. Syst.
,
23
(
8
), pp.
1369
1388
.
21.
Ingber
,
M. S.
, and
Mammoli
,
A. A.
,
1999
, “
A Comparison of Integral Formulations for the Analysis of Low Reynolds Number Flows
,”
Eng. Anal. Boundary Elem.
,
23
(
4
), pp.
307
315
.
22.
Pozrikidis
,
C.
,
1992
,
Boundary Integral and Singularity Methods for Linearized Viscous Flow
,
Cambridge University Press
,
New York
.
23.
D'Elía
,
J.
,
Battaglia
,
L.
,
Cardona
,
A.
,
Storti
,
M.
, and
Ríos Rodríguez
,
G.
,
2014
, “
Galerkin Boundary Elements for a Computation of the Surface Tractions in Exterior Stokes Flows
,”
ASME J. Fluids Eng.
,
136
(
11
), p.
111102
.
24.
Tripathi
,
D.
,
2011
, “
Numerical Study on Creeping Flow of Burgersfluids Through a Peristaltic Tube
,”
ASME J. Fluids Eng.
,
133
(
12
), p.
121104
.
25.
Wang
,
Z.
,
Zhao
,
J.
, and
Wu
,
J.
,
2014
, “
Stokes Flow Characteristics in a Cylindrical Quadrant Duct With Rotating Outer Wall
,”
ASME J. Fluids Eng.
,
136
(
11
), p.
111202
.
26.
Lepchev
,
D.
, and
Weihs
,
D.
,
2010
, “
Low Reynolds Number Flow in Spiral Microchannels
,”
ASME J. Fluids Eng.
,
132
(
7
), p.
071202
.
27.
Hewson
,
R. W.
,
2009
, “
Free Surface Model Derived From the Analytical Solution of Stokes Flow in a Wedge
,”
ASME J. Fluids Eng.
,
131
(
4
), p.
041205
.
28.
Wang
,
C. Y.
,
2016
, “
Exact Solutions for Starting and Oscillatory Flows in an Equilateral Triangular Duct
,”
ASME J. Fluids Eng.
,
138
(
8
), p.
084503
.
29.
Ishikawa
,
T.
, and
Vladimirov
,
V. A.
,
2015
, “
A Stepping Microrobot Controlled by Flow Oscillations
,”
ASME J. Fluids Eng.
,
137
(
8
), p.
084501
.
30.
Schöberl
,
J.
,
1997
, “
NETGEN—An Advancing Front 2D/3D-Mesh Generator Based on Abstract Rules
,”
Comput. Visualization Sci.
,
1
(
1
), pp.
41
52
.
31.
Xiao
,
J.
, and
Ye
,
W.
,
2011
, “
Wavelet BEM for Large-Scale Stokes Flows Based on the Direct Integral Formulation
,”
Int. J. Numer. Methods Eng.
,
88
(
7
), pp.
693
714
.
32.
Paz
,
R. R.
,
Storti
,
M. A.
,
Dalcin
,
L. D.
,
Castro
,
H. G.
, and
Kler
,
P. A.
,
2012
, “
FastMat: A C++ Library for Multi-Index Array Computations
,”
Adv. Eng. Software
,
54
, pp.
38
48
.
33.
Gray
,
L. J.
, and
Griffith
,
B. E.
,
1998
, “
A Faster Galerkin Boundary Integral Algorithm
,”
Int. J. Numer. Methods Biomed. Eng.
,
14
, pp.
1109
1117
.
34.
Morino
,
L.
,
1985
,
Computational Methods in Potential Aerodynamics
,
Springer-Verlag
,
Southampton, UK
.
35.
Landweber
,
L.
,
1961
, “
Motion of Immersed and Floating Bodies
,”
Handbook of Fluid Dynamics
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.