Cavitation within regions of flow separation appears in drifting vortices. A two-part computational method is employed for prediction of cavitation inception number there. The first part is an analysis of the average flow in separation regions without consideration of an impact of vortices. The second part is an analysis of equilibrium of the bubble within the core of a vortex located in the turbulent flow of known average characteristics. Computed cavitation inception numbers for axisymmetric flows are in the good agreement with the known experimental data.

References

References
1.
Amromin
,
E. L.
,
2002
, “
Scale Effect of Cavitation Inception on a 2D Eppler Hydrofoil
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
186
193
.
2.
Coutier-Delgosha
,
O.
,
Deniset
,
F.
,
Astolfi
,
J. A.
, and
Leroux
,
J.-B.
,
2007
, “
Numerical Prediction of Cavitating Flow on a Two Dimensional Symmetrical Hydrofoil and Comparison to Experiments
,”
ASME J. Fluids Eng.
,
129
(
3
), pp.
279
292
.
3.
Amromin
,
E. L.
,
2014
, “
Development and Validation of CFD Models for Initial Stages of Cavitation
,”
ASME J. Fluids Eng.
,
136
(
8
), p.
081303
.
4.
Katz
,
J.
,
1984
, “
Cavitation Phenomena Within Regions of Flow Separation
,”
J. Fluid Mech.
,
140
, pp.
397
436
.
5.
Farrell
,
K. J.
,
2003
, “
Eulerian/Lagrangian Analysis for the Prediction of Cavitation Inception
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
46
52
.
6.
Ma
,
J.
,
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
,
2015
, “
Shared-Memory Parallelization for Two-Way Coupled Euler–Lagrange Modeling of Cavitating Bubbly Flows
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121106
.
7.
Lindgren
,
H.
, and
Johnson
,
C. A.
,
1966
, “
Cavitation Inception on Head Form ITTC: Comparative Experiments
,”
11th International Towing Tank Conference
(ITTC), Tokyo, Japan, Oct. 10–20, pp. 219–232.
8.
Arakeri
,
V. H.
, and
Acosta
,
A. J.
,
1973
, “
Viscous Effects in the on Cavitation Inception of Axisymmetric Bodies
,”
ASME J. Fluids Eng.
,
95
(
4
), pp.
519
527
.
9.
Arndt
,
R. E. A.
,
1978
, “
Investigation of the Effect of Dissolved Gas and Free Nuclei on Cavitation and Noise in the Wake of a Sharp Edge Disk
,”
Joint IAHR/ASME/ASCE Symposium on Design and Operation of Fluid Machinery
, Fort Collins, CO, June 12–14, pp.
543
555
.
10.
Hsiao
,
C.-T.
,
Chahine
,
G. L.
, and
Liu
,
H.-L.
,
2003
, “
Scale Effect on Prediction of Cavitation Inception in a Line Vortex Flow
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
53
60
.
11.
Amromin
,
E. L.
,
2013
, “
Vehicle Drag Reduction With Control of Critical Reynolds Number
,”
ASME J. Fluids Eng.
,
135
(
10
), p.
101105
.
12.
Amromin
,
E. L.
,
2016
, “
Analysis of Cavitation Inception and Desinence Behind Surface Irregularities
,”
Phys. Fluids
,
28
(
7
), p.
075106
.
13.
Ramamurthy
,
A. S.
,
Balanchandar
,
R.
, and
Govinda Ram
,
H. S.
,
1991
, “
Some Characteristics of Flow Past Backward Facing Steps Including Cavitation Effects
,”
ASME J. Fluids Eng.
,
113
(
2
), pp.
278
284
.
14.
Castillo
,
L.
,
Wang
,
X.
, and
George
,
W. K.
,
2004
, “
Separation Criterion for Turbulent Boundary Layers Via Similarity Analysis
,”
ASME J. Fluids Eng.
,
126
(
3
), pp.
297
304
.
15.
Cebeci
,
T.
, and
Bradshaw
,
P.
,
1984
,
Physical and Computational Aspects of Convective Head Transfer
,
Springer-Verlag
,
New York
.
16.
Simpson
,
R. L.
,
Chew
,
Y.-T.
, and
Shivaprasad
,
B. G.
,
1981
, “
The Structure of a Separating Turbulent Boundary Layer—Part 1: Mean Flow and Reynolds Stresses
,”
J. Fluid Mech.
,
113
, pp.
23
51
.
17.
Jovic
,
S.
, and
Driver
,
D.
,
1995
, “
Reynolds Number Effect on the Skin Friction in Separated Flows Behind a Backward-Facing Step
,”
Exp. Fluids
,
18
(
6
), pp.
464
467
.
18.
O'Malley
,
K.
,
Fitt
,
A. D.
,
Jones
,
T. V.
,
Ockendon
,
J. R.
, and
Wilmott
,
P.
,
1991
, “
Model for High-Reynolds Number Flow Down a Step
,”
J. Fluid Mech.
,
222
, pp.
139
155
.
19.
Amromin
,
E. L.
,
2013
, “
Analysis of Airfoil Stall With a Modification of Viscous–Inviscid Interaction Concept
,”
ASME J. Fluids Eng.
,
135
(
5
), p.
051105
.
20.
Wade
,
R. B.
, and
Acosta
,
A. J.
,
1966
, “
Experimental Observation of the Flow Past a Plano-Convex Hydrofoil
,”
ASME J. Basic Eng.
,
88
(
1
), pp.
273
283
.
21.
Gindroz
,
B.
, and
Billet
,
M. L.
,
1998
, “
Influence of the Nuclei on the Cavitation Inception for Different Types of Cavitation on Ship Propellers
,”
ASME J. Fluids Eng.
,
120
(
1
), pp.
171
178
.
22.
Arndt
,
R. E. A.
,
Arakeri
,
V. H.
, and
Higuchi
,
H.
,
1991
, “
Some Observations of Tip-Vortex Cavitation
,”
J. Fluid Mech.
,
229
, pp.
269
289
.
23.
Castro
,
E.
,
Crespo
,
A.
,
Manuel
,
F.
, and
Fruman
,
D. H. J.
,
1997
, “
Equilibrium of Ventilated Cavities in Tip Vortices
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
759
767
.
24.
Amromin
,
E. L.
,
2007
, “
Analysis of Vortex Core in Steady Turbulent Flow
,”
Phys. Fluids
,
19
(
11
), p.
118108
.
25.
Arndt
,
R. E. A.
,
Amromin
,
E. L.
, and
Hambleton
,
J.
,
2009
, “
Cavitation Inception in the Wake of a Jet-Driven Body
,”
ASME J. Fluids Eng.
,
131
(
11
), p.
111302
.
26.
Arakeri
,
V. H.
, and
Ramarajan
,
V.
,
1981
, “
Inception of Cavitation From a Backward Facing Step
,”
ASME J. Fluids Eng.
,
103
(
2
), pp.
288
293
.
27.
Kwon
,
O. K.
, and
Pletcher
,
R.
,
1986
, “
A Viscous–Inviscid Interaction Procedure
,”
ASME J. Fluids Eng.
,
108
(
1
), pp.
64
75
.
28.
Dejoan
,
A.
,
Jang
,
Y.-J.
, and
Leschziner
,
M. A.
,
2005
, “
Comparative LES and Unsteady RANS Computations for a Periodically-Perturbed Separated Flow Over a Backward-Facing Step
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
872
878
.
29.
Wang
,
X.
, and
Walters
,
K.
,
2012
, “
Computational Analysis of Marine-Propeller Performance Using Transition-Sensitive Turbulence Modeling
,”
ASME J. Fluids Eng.
,
134
(
7
), p.
071107
.
You do not currently have access to this content.