In this paper, the analysis of fast laminar transients in pressurized pipes is developed using a computational fluid dynamics (CFD) model, combined with the Zielke model and laboratory data. The systematic verification of the performance of the CFD model executed in the first part of the paper allows defining the most efficient set of the discretization parameters capable of capturing the main features of the examined transient. In this framework, the crucial role of radial discretization is pointed out. In the second part of the paper, the refined and efficient CFD model is used to examine some aspects of interest for understanding the dynamics of transients. Specifically, the uniformity of the instantaneous pressure distributions along the pipe radius, which validates the results of the most popular quasi-two-dimensional (2D) models, has been revealed. Moreover, it has been shown that the strongest link between the wall shear stress and the axial component of the velocity occurs in the region close to the pipe wall as well as that the time-shift between the wall shear stress and the local instantaneous flow acceleration increases significantly as time elapses.

References

1.
Holmboe
,
E. L.
, and
Rouleau
,
W. T.
,
1967
, “
The Effect of Viscous Shear on Transients in Liquid Lines
,”
ASME J. Basic Eng.
,
89
(
1
), pp.
174
180
.
2.
Zielke
,
W.
,
1968
, “
Frequency-Dependent Friction in Transient Pipe Flow
,”
ASME J. Basic Eng.
,
90
(
1
), pp.
109
115
.
3.
Trikha
,
A. K.
,
1975
, “
An Efficient Method for Simulating Frequency-Dependent Friction in Transient Liquid Flow
,”
ASME J. Fluids Eng.
,
97
(
1
), pp.
97
105
.
4.
Suzuki
,
K.
,
Taketomi
,
T.
, and
Sato
,
S.
,
1991
, “
Improving Zielke's Method of Simulating Frequency-Dependent Friction in Laminar Liquid Pipe Flow
,”
ASME J. Fluids Eng.
,
113
(
4
), pp.
569
573
.
5.
Schohl
,
G. A.
,
1993
, “
Improved Approximate Method for Simulating Frequency-Dependent Friction in Transient Laminar Flow
,”
ASME J. Fluids Eng.
,
115
(
3
), pp.
420
424
.
6.
Stavitsky
,
D.
, and
Macagno
,
E.
,
1980
, “
Approximate Analysis of Unsteady Laminar Flow
,”
ASCE J. Hydraul. Div.
,
106
(
12
), pp.
1973
1980
.http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0009930
7.
Brunone
,
B.
,
Ferrante
,
M.
, and
Cacciamani
,
M.
,
2004
, “
Decay of Pressure and Energy Dissipation in Laminar Transient Flow
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
928
934
.
8.
Ghidaoui
,
M. S.
,
Zhao
,
M.
,
McInnis
,
D. A.
, and
Axworthy
,
D. H.
,
2005
, “
A Review of Water Hammer Theory and Practice
,”
ASME Appl. Mech. Rev.
,
58
(
1
), pp.
49
76
.
9.
Adamkowski
,
A.
, and
Lewandowski
,
M.
,
2006
, “
Experimental Examination of Unsteady Friction Models for Transient Pipe Flow Simulation
,”
ASME J. Fluids Eng.
,
128
(
6
), pp.
1351
1363
.
10.
Vardy
,
A. E.
, and
Brown
,
J. M. B.
,
2003
, “
Transient Turbulent Friction in Smooth Pipe Flows
,”
J. Sound Vib.
,
259
(
5
), pp.
1011
1036
.
11.
Vardy
,
A.
, and
Brown
,
J.
,
2004
, “
Efficient Approximation of Unsteady Friction Weighting Functions
,”
J. Hydraul. Eng.
,
130
(
11
), pp.
1097
1107
.
12.
Meniconi
,
S.
,
Duan
,
H. F.
,
Brunone
,
B.
,
Ghidaoui
,
M. S.
,
Lee
,
P. J.
, and
Ferrante
,
M.
,
2014
, “
Further Developments in Rapidly Decelerating Turbulent Pipe Flow Modeling
,”
J. Hydraul. Eng.
,
140
(
7
), p.
04014021
.
13.
Brunone
,
B.
, and
Morelli
,
L.
,
1999
, “
Automatic Control Valve-Induced Transients in Operative Pipe System
,”
J. Hydraul. Eng.
,
125
(
5
), pp.
534
542
.
14.
Brunone
,
B.
, and
Golia
,
U. M.
,
2008
, “
Discussion of ‘Systematic Evaluation of One-Dimensional Unsteady Friction Models in Simple Pipelines’ by J. P. Vitkovsky, A. Bergant, A. R. Simpson, and M. F. Lambert
,”
J. Hydraul. Eng.
,
134
(
2
), pp.
282
284
.
15.
Pezzinga
,
G.
,
2009
, “
Local Balance Unsteady Friction Model
,”
J. Hydraul. Eng.
,
135
(
1
), pp.
45
56
.
16.
Hullender
,
D. A.
,
2016
, “
Alternative Approach for Modeling Transients in Smooth Pipe With Low Turbulent Flow
,”
ASME J. Fluids Eng.
,
138
(
12
), p.
121202
.
17.
Liou
,
J. C. P.
,
2016
, “
Understanding Line Packing in Frictional Water Hammer
,”
ASME J. Fluids Eng.
,
138
(
8
), p.
081303
.
18.
Brunone
,
B.
, and
Berni
,
A.
,
2010
, “
Wall Shear Stress in Transient Turbulent Pipe Flow by Local Velocity Measurement
,”
J. Hydraul. Eng.
,
136
(
10
), pp.
716
726
.
19.
Brunone
,
B.
,
Karney
,
B. W.
,
Mecarelli
,
M.
, and
Ferrante
,
M.
,
2000
, “
Velocity Profiles and Unsteady Pipe Friction in Transient Flow
,”
J. Water Resour. Plann. Manage.
,
126
(
4
), pp.
236
244
.
20.
Nowak
,
M.
,
2002
, “
Wall Shear Stress Measurement in a Turbulent Pipe Flow Using Ultrasound Doppler Velocimetry
,”
Exp. Fluids
,
33
(
2
), pp.
249
255
.
21.
Garcia
,
C. M.
,
Cantero
,
M. I.
,
Nino
,
Y.
, and
Garcia
,
M. H.
,
2005
, “
Turbulence Measurements With Acoustic Doppler Velocimeters
,”
J. Hydraul. Eng.
,
131
(
12
), pp.
1062
1073
.
22.
Mitra
,
A. K.
, and
Rouleau
,
W. T.
,
1985
, “
Radial and Axial Variations in Transient Pressure Waves Transmitted Through Liquid Transmission Lines
,”
ASME J. Fluids Eng.
,
107
(
1
), pp.
105
111
.
23.
Riasi
,
A.
,
Nourbakhsh
,
A.
, and
Raisee
,
M.
,
2009
, “
Unsteady Velocity Profiles in Laminar and Turbulent Water Hammer Flows
,”
ASME J. Fluids Eng.
,
131
(
12
), p.
121202
.
24.
Wahba
,
E. M.
,
2006
, “
Runge–Kutta Time-Stepping Schemes With TVD Central Differencing for the Water Hammer Equations
,”
Int. J. Numer. Methods Fluids
,
52
(
5
), pp.
571
590
.
25.
Wahba
,
E. M.
,
2008
, “
Modelling the Attenuation of Laminar Fluid Transients in Piping Systems
,”
Appl. Math. Modell.
,
32
(
12
), pp.
2863
2871
.
26.
Duan
,
H. F.
,
Ghidaoui
,
M. S.
, and
Tung
,
Y. K.
,
2009
, “
An Efficient Quasi-2D Simulation of Waterhammer in Complex Pipe Systems
,”
ASME J. Fluids Eng.
,
131
(
8
), p.
081105
.
27.
Bratland
,
O.
,
1986
, “
Frequency-Dependent Friction and Radial Kinetic Energy Variation in Transient Pipe Flow
,”
Fifth International Conference on Pressure Surges
, Hannover, Germany, Sept. 22–24, pp.
95
101
.
28.
Vardy
,
A. E.
,
Brown
,
J. M. B.
, and
Hwang
,
K. L.
,
1993
, “
A Weighting Function Model of Transient Turbulent Pipe Friction
,”
J. Hydraul. Res.
,
31
(
4
), pp.
533
548
.
29.
Pezzinga
,
G.
,
1999
, “
Quasi-2D Model for Unsteady Flow in Pipe Networks
,”
J. Hydraul. Eng.
,
125
(
7
), pp.
676
685
.
30.
Brunone
,
B.
,
Golia
,
U. M.
, and
Greco
,
M.
,
1995
, “
Effects of Two-Dimensionality on Pipe Transients Modeling
,”
J. Hydraul. Eng.
,
121
(
12
), pp.
906
912
.
31.
Zhao
,
M.
, and
Ghidaoui
,
M. S.
,
2006
, “
Investigation of Turbulence Behavior in Pipe Transient Using a Kappa–Epsilon Model
,”
J. Hydraul. Res.
,
44
(
5
), pp.
682
692
.
32.
Pezzinga
,
G.
,
2000
, “
Evaluation of Unsteady Flow Resistances by Quasi-2D or 1D Models
,”
J. Hydraul. Eng.
,
126
(
10
), pp.
778
785
.
33.
Annus
,
I.
,
Koppel
,
T.
,
Sarv
,
L.
, and
Ainola
,
L.
,
2013
, “
Development of Accelerating Pipe Flow Starting From Rest
,”
ASME J. Fluids Eng.
,
135
(
11
), p.
111204
.
34.
Koppel
,
T.
, and
Ainola
,
L.
,
2005
, “
Identification of Transition to Turbulence in a Highly Accelerated Start-Up Pipe Flow
,”
ASME J. Fluids Eng.
,
128
(
4
), pp.
680
686
.
35.
Annus
,
I.
, and
Koppel
,
T.
,
2011
, “
Transition to Turbulence in Accelerating Pipe Flow
,”
ASME J. Fluids Eng.
,
133
(
7
), p.
071202
.
36.
Richardson
,
E. G.
, and
Tyler
,
E.
,
1929
, “
The Transverse Velocity Gradient Near the Mouths of Pipes in Which an Alternating or Continuous Flow of Air Is Established
,”
Proc. Phys. Soc.
,
42
(
1
), pp.
1
15
.
37.
Zhou
,
L.
,
Liu
,
D.-Y.
, and
Ou
,
C.-Q.
,
2014
, “
Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket With VOF Model
,”
Eng. Appl. Comput. Fluid Mech.
,
5
(
1
), pp.
127
140
.
38.
Martins
,
S. C.
,
Martins
,
N. M. C.
,
Ramos
,
H. M.
, and
Almeida
,
A. B.
,
2012
, “
Liquid Flow and Entrapped Air Behaviours in an Experimental Set-Up Using CFD Analysis
,”
11th International Conference on Pressure Surges—Surge Analysis
, Lisbon, Portugal, Oct. 24–26, pp.
505
516
.
39.
Martins
,
N. M. C.
,
Soares
,
A. K.
,
Ramos
,
H. M.
, and
Covas
,
D. I. C.
,
2015
, “
Entrapped Air Pocket Analysis Using CFD
,”
12th International Conference on Pressure Surges
, Dublin, Ireland, Nov. 18–20, pp.
229
238
.https://www.researchgate.net/publication/299368816_Entrapped_air_pocket_analysis_using_CFD
40.
Martins
,
N. M. C.
,
Delgado
,
J. N.
,
Ramos
,
H. M.
, and
Covas
,
D. I. C.
,
2017
, “
Maximum Transient Pressures in a Rapidly Filling Pipeline With Entrapped Air Using a CFD Model
,”
J. Hydraul. Res.
,
55
(
4
), pp.
1
14
.
41.
Martins
,
N. M. C.
,
Soares
,
A. K.
,
Ramos
,
H. M.
, and
Covas
,
D. I. C.
,
2016
, “
CFD Modeling of Transient Flow in Pressurized Pipes
,”
Comput. Fluids
,
126
, pp.
129
140
.
42.
Martins
,
N. M. C.
,
Carriço
,
N. J. G.
,
Ramos
,
H. M.
, and
Covas
,
D. I. C.
,
2014
, “
Velocity-Distribution in Pressurized Pipe Flow Using CFD: Accuracy and Mesh Analysis
,”
Comput. Fluids
,
105
, pp.
218
230
.
43.
Martins
,
N. M. C.
,
Carriço
,
N. J. G.
,
Covas
,
D. I. C.
, and
Ramos
,
H. M.
,
2014
, “
Velocity-Distribution in Pressurized Pipe Flow Using CFD: Mesh Independence Analysis
,”
Third IAHR Europe Congress
, Porto, Portugal, Apr. 14–16, pp.
145
156
.https://www.researchgate.net/publication/266259133_Velocity-Distribution_in_Pressurized_Pipe_Flow_using_CFD_Mesh_Independence_Analysis
44.
Nash
,
J. E.
, and
Sutcliffe
,
J. V.
,
1970
, “
River Flow Forecasting Through Conceptual Models Part I—A Discussion of Principles
,”
J. Hydrol.
,
10
(
3
), pp.
282
290
.
45.
Ghidaoui
,
M. S.
, and
Kolyshkin
,
A. A.
,
2001
, “
Stability Analysis of Velocity Profiles in Water-Hammer Flows
,”
J. Hydraul. Eng.
,
127
(
6
), pp.
499
512
.
You do not currently have access to this content.