This paper presents a parametric study on the interaction of twin circular synthetic jets (SJs) that are in line with a crossflow over a flat plate. The resulting vortex structures under different actuation, and flow conditions are investigated using two-plane dye visualization in a water tunnel. The influence of four independent nondimensional parameters, i.e., the Reynolds number (ReL), Strouhal number (St), velocity ratio (VR), and phase difference (Δϕ), on the behavior of the twin SJs is studied. It is found that the increase of Reynolds number causes the SJ-induced vortex structures more turbulent, making the twin SJ interaction less organized. The increase of velocity ratio pushes the occurrence of interaction further away from the wall and makes the resulting vortex structures more sustainable. The St has no obvious influence on the interaction. And three types of vortex structures are observed under different phase differences: one combined vortex, two completely separated vortices, and partially interacting vortex structures. Based on this parametric study, a simple model is proposed to predict the resulting vortex pattern for the twin SJ interaction.

References

References
1.
Seifert
,
A.
, and
Pack
,
L. G.
,
1999
, “
Oscillatory Control of Separation at High Reynolds Numbers
,”
AIAA J.
,
37
(
9
), pp.
1062
1071
.
2.
Amitay
,
M.
,
Smith
,
D. R.
,
Kibens
,
V.
,
Parekh
,
D. E.
, and
Glezer
,
A.
,
2001
, “
Aerodynamic Flow Control Over an Unconventional Airfoil Using Synthetic Jet Actuators
,”
AIAA J.
,
39
(
3
), pp.
361
370
.
3.
Amitay
,
M.
, and
Glezer
,
A.
,
2002
, “
Role of Actuation Frequency in Controlled Flow Reattachment Over a Stalled Airfoil
,”
AIAA J.
,
40
(
2
), pp.
209
216
.
4.
Zhong
,
S.
,
Jabbal
,
M.
,
Tang
,
H.
,
Garcillan
,
L.
,
Guo
,
F.
,
Wood
,
N.
, and
Warsop
,
C.
,
2007
, “
Toward the Design of Synthetic-Jet Actuators for Full-Scale Flight Conditions
,”
Flow, Turbul. Combust.
,
78
(
3
), pp.
283
307
.
5.
Yen
,
J.
, and
Ahmed
,
N. A.
,
2012
, “
Parametric Study of Dynamic Stall Flow Field With Synthetic Jet Actuation
,”
ASME J. Fluids Eng.
,
134
(
7
), p.
071106
.
6.
Tang
,
H.
,
Salunkhe
,
P.
,
Zheng
,
Y.
,
Du
,
J.
, and
Wu
,
Y.
,
2014
, “
On the Use of Synthetic Jet Actuator Arrays for Active Flow Separation Control
,”
Exp. Therm. Fluid Sci.
,
57
, pp.
1
10
.
7.
Pavlova
,
A. A.
,
Otani
,
K.
, and
Amitay
,
M.
,
2008
, “
Active Control of Sprays Using a Single Synthetic Jet Actuator
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
131
148
.
8.
Al-Atabi
,
M.
,
2011
, “
Experimental Investigation of the Use of Synthetic Jets for Mixing in Vessels
,”
ASME J. Fluids Eng.
,
133
(
9
), p.
094503
.
9.
Xia
,
Q.
, and
Zhong
,
S.
,
2014
, “
Enhancement of Laminar Flow Mixing Using a Pair of Staggered Lateral Synthetic Jets
,”
Sens. Actuators, A
,
207
, pp.
75
83
.
10.
Rathnasingham
,
R.
, and
Breuer
,
K. S.
,
2003
, “
Active Control of Turbulent Boundary Layers
,”
J. Fluid Mech.
,
495
, pp.
209
233
.
11.
Crook
,
A.
, and
Wood
,
N.
,
2001
, “
Measurements and Visualisations of Synthetic Jets
,”
AIAA
Paper No. 2001-0145.
12.
Ramasamy
,
M.
,
Wilson
,
J. S.
, and
Martin
,
P. B.
,
2010
, “
Interaction of Synthetic Jet With Boundary Layer Using Microscopic Particle Image Velocimetry
,”
J. Aircr.
,
47
(
2
), pp.
404
422
.
13.
Zhong
,
S.
, and
Zhang
,
S.
,
2013
, “
Further Examination of the Mechanism of Round Synthetic Jets in Delaying Turbulent Flow Separation
,”
Flow, Turbul. Combust.
,
91
(
1
), pp.
177
208
.
14.
Jabbal
,
M.
, and
Zhong
,
S.
,
2008
, “
The Near Wall Effect of Synthetic Jets in a Boundary Layer
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
119
130
.
15.
Zhou
,
J.
, and
Zhong
,
S.
,
2010
, “
Coherent Structures Produced by the Interaction Between Synthetic Jets and a Laminar Boundary Layer and Their Surface Shear Stress Patterns
,”
Comput. Fluids
,
39
(
8
), pp.
1296
1313
.
16.
Wen
,
X.
, and
Tang
,
H.
,
2014
, “
On Hairpin Vortex Induced by Circular Synthetic Jets in Laminar and Turbulent Boundary Layers
,”
Comput. Fluids
,
95
, pp.
1
18
.
17.
Jabbal
,
M.
, and
Zhong
,
S.
,
2010
, “
Particle Image Velocimetry Measurements of the Interaction of Synthetic Jets With a Zero-Pressure Gradient Laminar Boundary Layer
,”
Phys. Fluids
,
22
(
6
), p.
063603
.
18.
Zhang
,
S.
, and
Zhong
,
S.
,
2010
, “
Experimental Investigation of Flow Separation Control Using an Array of Synthetic Jets
,”
AIAA J.
,
48
(
3
), pp.
611
623
.
19.
Hasnain
,
Z.
,
Trollinger
,
L. N.
,
Hubbard
,
J. E.
, and
Flatau
,
A. B.
,
2015
, “
Dynamic Flow Control Over Aerodynamic Bodies Using Phased Array Vectored Synthetic Jet Actuation
,”
AIAA
Paper No. 2015-2426.
20.
Zhao
,
G.
,
Zhao
,
Q.
,
Gu
,
Y.
, and
Chen
,
X.
,
2016
, “
Experimental Investigations for Parametric Effects of Dual Synthetic Jets on Delaying Stall of a Thick Airfoil
,”
Chin. J. Aeronaut.
,
29
(
2
), pp.
346
357
.
21.
Kolar
,
V.
,
Takao
,
H.
,
Todorki
,
T.
,
Savory
,
E.
,
Okamoto
,
S.
, and
Toy
,
N.
,
2003
, “
Vorticity Transport Within Twin Jets in Cross Flow
,”
Exp. Therm. Fluid Sci.
,
27
(
5
), pp.
563
571
.
22.
Watson
,
M.
,
Jaworski
,
A. J.
, and
Wood
,
N. J.
,
2003
, “
Contribution to the Understanding of Flow Interactions Between Multiple Synthetic Jets
,”
AIAA J.
,
41
(
4
), pp.
747
749
.
23.
Wen
,
X.
, and
Tang
,
H.
,
2015
, “
Effect of Phase Difference on the Interaction of Hairpin Vortices Induced by In-Line Twin Synthetic Jets
,”
J. Visualization
,
19
(
1
), pp.
79
87
.
24.
Wen
,
X.
,
Tang
,
H.
, and
Duan
,
F.
,
2015
, “
Vortex Dynamics of In-Line Twin Synthetic Jets in a Laminar Boundary Layer
,”
Phys. Fluids
,
27
(
8
), p.
083601
.
25.
Wen
,
X.
,
Tang
,
H.
, and
Duan
,
F.
,
2016
, “
Interaction of In-Line Twin Synthetic Jets With a Separated Flow
,”
Phys. Fluids
,
28
(
4
), p.
043602
.
26.
Liddle
,
S. C.
, and
Wood
,
N. J.
,
2005
, “
Investigation Into Clustering of Synthetic Jet Actuators for Flow Separation Control Applications
,”
Aeronaut. J.
,
109
(
1091
), pp.
35
44
.
27.
Iai
,
T.
,
Iwabuchi
,
K.
,
Motosuke
,
M.
, and
Honami
,
S.
,
2010
, “
Vortex Behavior of In-Line Synthetic Jets in Cross Flow at Low Reynolds Number
,”
AIAA
Paper No. 2010-4412.
28.
Honami
,
S.
, and
Motosuke
,
M.
,
2012
, “
Vortex Interaction of In-Line Synthetic Jets Injected at Different Phase in Low Reynolds Number Cross Flow
,”
AIAA
Paper No. 2012-3243.
29.
Jabbal
,
M.
,
Wu
,
J.
, and
Zhong
,
S.
,
2006
, “
The Performance of Round Synthetic Jets in Quiescent Flow
,”
Aeronaut. J.
,
110
(
1108
), pp.
385
393
.
30.
Tang
,
H.
, and
Zhong
,
S.
,
2006
, “
Incompressible Flow Model of Synthetic Jet Actuators
,”
AIAA J.
,
44
(
4
), pp.
908
912
.
31.
Zhou
,
J.
,
Tang
,
H.
, and
Zhong
,
S.
,
2009
, “
Vortex Roll-Up Criterion for Synthetic Jets
,”
AIAA J.
,
47
(
5
), pp.
1252
1262
.
32.
Holman
,
R.
,
Utturkar
,
Y.
,
Mittal
,
R.
,
Smith
,
B. L.
, and
Cattafesta
,
L.
,
2005
, “
Formation Criterion for Synthetic Jets
,”
AIAA J.
,
43
(
10
), pp.
2110
2116
.
33.
Milanovic
,
I. M.
, and
Zaman
,
K. B. M. Q.
,
2005
, “
Synthetic Jets in Cross-Flow
,”
AIAA J.
,
43
(
5
), pp.
929
940
.
34.
Gharib
,
M.
,
Rambod
,
E.
, and
Shariff
,
K.
,
1998
, “
A Universal Time Scale for Vortex Ring Formation
,”
J. Fluid Mech.
,
360
, pp.
121
140
.
You do not currently have access to this content.