Two-phase flows across tube bundles are very commonly found in industrial heat exchange equipment such as shell and tube heat exchangers. However, recent studies published in the literature are generally performed on devices where the flow crosses the tube bundle in only a vertical or horizontal direction, lacking geometrical fidelity with industrial models, and the majority of them use air and water as the working fluids. Also, currently, experimental approaches and simulations are based on very simplified models. This paper reports the simulation of a laboratory full-scale tube bundle with a combination of vertical and horizontal flows and with two different baffle configurations. Also, it presents a similarity analysis to evaluate the influence of changing the fluids to hydrogen and diesel in the operational conditions of the hydrotreating. The volume of fluid (VOF) approach is used as the interface phenomena are very important. The air/water simulations show good agreement with classical correlations and are able to show the stratified behavior of the flow in the horizontal regions and the intermittent flow in the vertical regions. Also, the two baffle configurations are compared in terms of volume fraction and streamlines. When dealing with hydrogen/diesel flow using correlations and maps made for air/water, superficial velocity is recommended as similarity variable when a better prediction of the pressure drop is needed, and the modified superficial velocity is recommended for prediction of the volume-average void fraction and the outlet superficial void fraction.

References

References
1.
Hewitt
,
G. F.
,
2008
, “
Gas-Liquid Flow
,”
Heat Exchanger Design Handbook Online
,
4th ed.
,
G. F.
Hewitt
, ed.,
Begell House
,
New York
, Chap. 2.3.2.
2.
Castro Dantas
,
T. N.
,
Dantas Neto
,
A. A.
, and
Moura
,
M. C. P. A.
,
2014
, “
Study of New Alternatives for Removal of Sulfur From Diesel
,”
Braz. J. Petrol Gas
,
8
(
1
), pp.
15
32
.
3.
Ribatski
,
G.
, and
Thome
,
J. R.
,
2007
, “
Two-Phase Flow and Heat Transfer Across Horizontal Tube Bundles—A Review
,”
Heat Transfer Eng.
,
28
(
6
), pp.
508
524
.
4.
Grant
,
I. D. R.
, and
Chisholm
,
D.
,
1979
, “
Two-Phase Flow on the Shell-Side of a Segmentally Baffled Shell-and-Tube Heat Exchanger
,”
ASME J. Heat Transfer
,
101
(
1
), pp.
38
42
.
5.
Xu
,
G. P.
,
Tou
,
K. W.
, and
Tso
,
C. P.
,
1998
, “
Two-Phase Void Fraction and Pressure Drop in Horizontal Crossflow Across a Tube Bundle
,”
ASME J. Fluids Eng.
,
120
(
1
), pp.
140
145
.
6.
Ulbrich
,
R.
, and
Mewes
,
D.
,
1994
, “
Vertical, Upward Gas-Liquid Two-Phase Flow Across a Tube Bundle
,”
Int. J. Multiphase Flow
,
20
(
2
), pp.
249
272
.
7.
Xu
,
G. P.
,
Tso
,
C. P.
, and
Tou
,
K. W.
,
1998
, “
Hydrodynamics of Two-Phase Flow in Vertical Up and Down-Flow Across a Horizontal Tube Bundle
,”
Int. J. Multiphase Flow
,
24
(
8
), pp.
1317
1342
.
8.
Noghrehkar
,
G. R.
,
Kawaji
,
M.
, and
Chan
,
A. M. C.
,
1999
, “
Investigation of Two-Phase Flow Regimes in Tube Bundles Under Cross-Flow Conditions
,”
Int. J. Multiphase Flow
,
25
(
5
), pp.
857
874
.
9.
Paranjape
,
S.
,
Chen
,
S.
,
Hibiki
,
T.
, and
Ishii
,
M.
,
2011
, “
Flow Regime Identification Under Adiabatic Upward Two-Phase Flow in a Vertical Rod Bundle Geometry
,”
ASME J. Fluids Eng.
,
133
(
9
), p.
091302
.
10.
McNeil
,
D. A.
,
Sadikin
,
A.
, and
Bamardouf
,
K. H.
,
2012
, “
A Mechanistic Analysis of Shell-Side Two-Phase Flow in an Idealised In-Line Tube Bundle
,”
Int. J. Multiphase Flow
,
45
, pp.
53
69
.
11.
Kanizawa
,
F. T.
, and
Ribatski
,
G.
,
2016
, “
Two-Phase Flow Patterns Across Triangular Tube Bundles for Air-Water Upward Flow
,”
Int. J. Multiphase Flow
,
80
, pp.
43
56
.
12.
Aslam Bhutta
,
M. M.
,
Hayat
,
N.
,
Bashir
,
M. H.
,
Khan
,
A. R.
,
Ahmad
,
K. N.
, and
Khan
,
S.
,
2012
, “
CFD Applications in Various Heat Exchangers Design: A Review
,”
Appl. Therm. Eng.
,
32
, pp.
1
12
.
13.
Houri Jafari
,
H.
, and
Ghadiri Dehkordi
,
B.
,
2013
, “
Numerical Prediction of Fluid-Elastic Instability in Normal Triangular Tube Bundles With Multiple Flexible Circular Cylinders
,”
ASME J. Fluids Eng.
,
135
(
3
), p.
031102
.
14.
Hayashi
,
K.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2014
, “
Void Distribution and Bubble Motion in Bubbly Flows in a 4 × 4 Rod Bundle—Part II: Numerical Simulation
,”
J. Nucl. Sci. Technol.
,
51
(
5
), pp.
580
589
.
15.
Chen
,
J.
,
Zhang
,
R.
, and
Niu
,
R.
,
2015
, “
Numerical Simulation of Horizontal Tube Bundle Falling Film Flow Pattern Transformation
,”
Renewable Energy
,
73
, pp.
62
68
.
16.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
17.
Rider
,
W. J.
, and
Kothe
,
D. B.
,
1998
, “
Reconstructing Volume Tracking
,”
J. Comput. Phys.
,
141
(
2
), pp.
112
152
.
18.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
(
2
), pp.
301
314
.
19.
de Souza
,
J. F. A.
,
de Oliveira
,
L. R.
,
de Azevedo
,
J. L. L.
,
Soares
,
I. D.
, and
Mata
,
M. M.
,
2011
, “
Uma Revisão Sobre a Turbulência e sua Modelagem
,”
Rev. Bras. Geofísica
,
29
(
1
), pp.
21
41
.
20.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.
You do not currently have access to this content.