Most literature in the area of turbulent flow over rough surfaces discusses methods for turbulence models based on two or more transport equations, one of which is that for turbulence kinetic energy which supplies k that is heavily used for the rough wall treatment. However, many aeronautical engineers routinely use single equation turbulence models which solve directly for eddy viscosity and do not involve k. The present work proposes methods by which such one-equation models can predict flow cases which include multiple rough surfaces. The current approach does not impose changes to the wall distance function, should such a function be necessary. Several examples show that the proposed method is able to produce good predictions of both skin friction and heat transfer along rough surfaces. While results are not always as accurate as those predicted by turbulence models which solve for k, especially if detached or wake-like flow regions exist, accompanied by a significant increase in eddy viscosity, the single-equation models are able to provide predictions at least good enough for preliminary studies.

References

References
1.
Suga
,
K.
,
Craft
,
T.
, and
Iacovides
,
H.
,
2006
, “
An Analytical Wall-Function for Turbulent Flows and Heat Transfer Over Rough Walls
,”
Int. J. Heat Fluid Flow
,
27
(
5
), pp.
852
866
.
2.
Krogstad
,
P. A.
, and
Antonia
,
R. A.
,
1999
, “
Surface Roughness Effects in Turbulent Boundary Layers
,”
Exp. Fluids
,
27
(
5
), pp.
450
460
.
3.
Schultz
,
M. P.
, and
Flack
,
K. A.
,
2009
, “
Turbulent Boundary Layers on a Systematically Varied Rough Wall
,”
Phys. Fluids
,
21
(
1
), pp. 1–9.
4.
Pisarenco
,
M.
,
van der Linden
,
B.
,
Tijsseling
,
A.
,
Ory
,
E.
, and
Dam
,
J.
,
2009
, “
Friction Factor Estimation for Turbulent Flows in Corrugated Pipes With Rough Walls
,” University of Eindhoven, Eindhoven, The Netherlands, CASA Report No.
2009-15
.
5.
Achenbach
,
E.
,
1977
, “
The Effect of Surface Roughness on the Heat Transfer From a Circular Cylinder to the Cross Flow of Air
,”
Int. J. Heat Mass Transfer
,
20
(
4
), pp.
359
369
.
6.
Melis
,
G.
,
2007
, “
Proposal of a Correlation for Boundary Layer Flow Over Real Roughened Surfaces
,”
Ph.D. thesis
, Università degli Studi di Cagliari, Cagliari, Italy.
7.
Castro
,
I. P.
,
2007
, “
Rough-Wall Boundary Layers: Mean Flow Universality
,”
J. Fluid Mech.
,
585
, pp.
469
485
.
8.
Colebrook
,
C. F.
, and
White
,
C. M.
,
1937
, “
Experiments With Fluid Friction in Roughened Pipes
,”
Proc. R. Soc. London, Ser. A
,
161
(
906
), pp.
367
381
.
9.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aerosp.
,
1
, pp.
5
21
.
10.
Goldberg
,
U.
,
2003
, “
Turbulence Closure With a Topography-Parameter-Free Single Equation Model
,”
Int. J. Comput. Fluid Dyn.
,
17
(
1
), pp.
27
38
.
11.
White
,
F. M.
,
1974
,
Viscous Fluid Flow
,
McGraw-Hill
, New York, pp.
638
644
.
12.
Shur
,
M. L.
,
Strelets
,
M. K.
,
Travin
,
A. K.
, and
Spalart
,
P. R.
,
2000
, “
Turbulence Modeling in Rotating and Curved Channels: Assessing the Spalart–Shur Correction
,”
AIAA J.
,
38
(
5
), pp.
784
792
.
13.
Aupoix
,
B.
, and
Spalart
,
P. R.
,
2003
, “
Extensions of the Spalart–Allmaras Turbulence Model to Account for Wall Roughness
,”
Int. J. Heat Fluid Flow
,
24
(
4
), pp.
454
462
.
14.
Prandtl
,
L.
,
1927
,
Ergebnisse AVA Goettingen
, Ser. III, Springer, Berlin, pp.
1
5
.
15.
Prandtl
,
L.
, and
Schlichting
,
H.
,
1934
,
Werft, Reederei, Hafen
, Friedr. Vieweg & Sohn Verlagsgessellschaft mbH, Braunschweig, Germany, pp.
1
4
.
16.
Goldberg
,
U.
,
Peroomian
,
O.
, and
Chakravarthy
,
S.
,
1998
, “
A Wall-Distance-Free k–ε Model With Enhanced Near-Wall Treatment
,”
ASME J. Fluids Eng.
,
120
(
3
), pp.
457
462
.
17.
Kreith
,
F.
,
Manglik
,
R. M.
, and
Bohm
,
M. S.
,
2011
,
Principles of Heat Transfer
,
7th ed.
,
Cengage Learning
, Stamford, CT.
18.
Batten
,
P.
,
Leschziner
,
M. A.
, and
Goldberg
,
U. C.
,
1997
, “
Average-State Jacobians and Implicit Methods for Compressible Viscous and Turbulent Flows
,”
J. Comput. Phys.
,
137
(
1
), pp.
38
78
.
19.
Chakravarthy
,
S.
,
1999
, “
A Unified-Grid Finite Volume Formulation for Computational Fluid Dynamics
,”
Int. J. Numer. Methods Fluids
,
31
(
1
), pp.
309
323
.
20.
Song
,
S.
, and
Eaton
,
J. K.
,
2002
, “
The Effects of Wall Roughness on the Separated Flow Over a Smoothly Contoured Ramp
,”
Exp. Fluids
,
33
(
1
), pp.
38
46
.
21.
Goldberg
,
U.
,
Batten
,
P.
,
Palaniswamy
,
S.
,
Chakravarthy
,
S.
, and
Peroomian
,
O.
,
2000
, “
Hypersonic Flow Predictions Using Linear and Nonlinear Turbulence Closures
,”
AIAA J. Aircr.
,
37
(
4
), pp.
671
675
.
22.
Stefanini
,
L. M.
,
Silvares
,
O. M.
,
Lima da Silva
,
G. A.
, and
Zerbini
,
E. J. G. J.
,
2010
, “
Heat Transfer on Iced Cylinders
,”
AIAA
Paper No. 2010-7672.
23.
Reynolds
,
A. J.
,
1975
, “
The Prediction of Turbulent Prandtl and Schmidt Numbers
,”
Int. J. Heat Mass Transfer
,
18
(
9
), pp.
1055
1069
.
24.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
,
2005
,
Convective Heat and Mass Transfer
,
McGraw-Hill
, New York.
25.
Frossling
,
N.
,
1958
, “
Evaporation, Heat Transfer, and Velocity in Two Dimensional and Rotationally Symmetrical Laminar Boundary Layer Flow
,” Lund University, Sweden, Technical Report No.
NACA TM-1432
.
26.
Sahoo
,
D.
,
Papageorgev
,
M.
, and
Smits
,
A. J.
,
2010
, “
PIV Experiments on a Rough-Wall Hypersonic Turbulent Boundary Layer
,”
AIAA
Paper No. 2010-4471.
You do not currently have access to this content.