In steam turbine inlet valves used to adjust the power output of large steam turbines, the through-flow is reduced by lowering the valve plug and hence reducing the cross-sectional area between the plug and the seat. At throttled operation, a supersonic jet is formed between the plug and the seat. This jet bearing tremendous kinetic energy flows into the valve diffuser where it is dissipated. Depending on the dissipation process, a certain portion of the kinetic energy is converted to sound and subsequently to structural vibration, which can be harmful to the valve plug. The flow topology in the valve diffuser has a strong influence on the conversion of kinetic energy to sound and hence vibrations. Several studies show that an annular flow attached to the wall of the valve diffuser causes significantly less noise and vibrations than a detached flow in the core of the diffuser. The relation between the flow topology and the vibrations is already known, but the physics causing the transition from the undesired core flow to the desired annular flow and the dependency on the design are not fully understood. The paper presented here reveals the relation between the flow topology in the steam valve and the separation of underexpanded Coandă wall jets. The physics of the jet separations are clarified and a method to predict the flow separations with a low numerical effort is shown. Based on this, safe operational ranges free of separations can be predicted and improved design considerations can be made.

References

References
1.
Pluviose
,
M.
,
2013
, “
Quieting the Flows in Valves Using Kinetic Energy Degraders
,”
Int. J. Thermodyn.
,
16
(
3
), pp.
109
114
.
2.
Graf
,
H. R.
,
Ziada
,
S.
,
Rohner
,
R.
, and
Kälin
,
R.
,
1997
, “
Verification of Scaling Rules for Control Valve Noise by Means of Model Tests
,” 4th International Symposium on Fluid-Structure Interactions, Aeroelasticity, Flow-Induced Vibration and Noise, Dallas, TX, Nov. 16–21, pp. 455–462.
3.
Darwish
,
M.
, and
Bates
,
C. L.
,
1977
, “
Flow Vortex Shedding Forces in Check Valves
,”
Adv. Instrum.
,
32
, pp.
79
91
.
4.
Janzen
,
V. P.
,
Smith
,
B. A. W.
,
Luloff
,
B. V.
,
Pozsgai
,
J.
,
Dietrich
,
A. R.
,
Bouvier
,
J. M.
,
Errett
,
A. J.
,
Kitko
,
G. T.
, and
Roberts
,
T. C.
,
2007
, “
Acoustic Noise Reduction in Large-Diameter Steam-Line Gate Valves
,”
ASME
Paper No. PVP2007-26773.
5.
Michaud
,
S.
,
Ziada
,
S.
, and
Pastorel
,
H.
,
2001
, “
Acoustic Fatigue of a Steam Dump Pipe System Excited by Valve Noise
,”
J. Pressure Vessel Technol.
,
123
(
4
), pp.
461
468
.
6.
Liu
,
G.
,
Wang
,
S.
,
Guo
,
H.
,
Mao
,
J.
,
Feng
,
Z.
, and
Xiang
,
X.
,
2008
, “
Investigation on Flow Characteristics and Stability of Control Valves for Steam Turbines
,”
ASME
Paper No. GT2008-51016.
7.
Tecza
,
J.
,
Chochua
,
G.
, and
Moll
,
R.
,
2010
, “
Analysis of Fluid-Structure Interaction in a Steam Turbine Throttle Valve
,”
ASME
Paper No. GT2010-23788.
8.
Widell
,
K. E.
,
1980
, “
Governing Valve Vibration in a Large Steam Turbine
,”
Practical Experiences With Flow-Induced Vibrations
,
E.
Naudascher
, ed.,
Springer-Verlag
,
Berlin
, pp.
320
323
.
9.
Pluviose
,
M.
,
1989
, “
Stabilization of Flow Through Steam-Turbine Control Valves
,”
ASME J. Eng. Gas Turbines Power
,
111
(
4
), pp.
642
646
.
10.
Stastný
,
M.
,
Bednár
,
L.
,
Tajic
,
L.
,
Kolár
,
P.
,
Martinu
,
P.
, and
Matas
,
R.
,
2003
, “
Pulsating Flows in the Inlet of a Nuclear Steam Turbine
,”
5th European Conference on Turbomachinery
, Prague, Czech Republic, Mar. 17–22, pp.
677
686
.
11.
Morita
,
R.
,
Fumio
,
F.
,
Mori
,
M.
,
Tezuka
,
K.
, and
Tsujimoto
,
Y.
,
2005
, “
Flow Induced Vibrations of a Steam Control Valve in Middle Opening Condition
,”
ASME
Paper No. PVP2005-71334.
12.
Morita
,
R.
,
Inada
,
F.
,
Mori
,
M.
,
Tezuka
,
K.
, and
Tsujimoto
,
Y.
,
2004
, “
CFD Calculation and Experiments of Unsteady Flow on Control Valve
,”
ASME
Paper No. HT-FED2004-56017.
13.
Zhang
,
D.
, and
Engeda
,
A.
,
2003
, “
Venturi Valves for Steam Turbines and Improved Design Considerations
,”
Proc. Inst. Mech. Eng., Part A
,
217
(
2
), pp.
219
230
.
14.
Zhang
,
D.
,
Engeda
,
A.
,
Hardin
,
J. R.
, and
Aungier
,
R. H.
,
2004
, “
Experimental Study of Steam Turbine Control Valves
,”
Proc. Inst. Mech. Eng., Part C
,
218
(
5
), pp.
493
507
.
15.
Ziada
,
S.
,
Bühlmann
,
E. T.
, and
Bolleter
,
U.
,
1989
, “
Flow Impingement as an Excitation Source in Control Valves
,”
J. Fluids Struct.
,
3
(
5
), pp.
529
549
.
16.
Nakano
,
M.
,
Outa
,
E.
, and
Tajima
,
K.
,
1988
, “
Noise and Vibration Related to the Patterns of Supersonic Annular Flow in a Pressure Reducing Gas Valve
,”
ASME J. Fluids Eng.
,
110
(
1
), pp.
55
61
.
17.
Heymann
,
F. J.
, and
Statiano
,
M. A.
,
1973
, “
Steam Turbine Control Valves Noise
,”
85th Meeting of the Acoustical Society of America
(
ASA
), Boston, MA, Apr. 10–13, Paper No. M-8.
18.
Clari
,
M. B.
,
Polklas
,
T.
, and
Joos
,
F.
,
2011
, “
Three-Dimensional Flow Separations in the Diffuser of a Steam Turbine Control Valve
,”
ASME
Paper No. GT2011-45617.
19.
Schramm
,
A.
,
Müller
,
T.
,
Polklas
,
T.
,
Brunn
,
O.
, and
Mailach
,
R.
,
2014
, “
Unsteady Flow in Extraction Modules of Industrial Steam Turbines
,”
ASME
Paper No. GT2014-25394.
20.
Domnick
,
C. B.
,
Benra
,
F.-K.
,
Brillert
,
D.
,
Dohmen
,
H. J.
, and
Musch
,
C.
,
2015
, “
Numerical Investigation on the Time-Variant Flow Field and Dynamic Forces Acting in Steam Turbine Inlet Valves
,”
ASME J. Eng. Gas Turbines Power
,
137
(
8
), p. 081601.
21.
Domnick
,
C. B.
,
Benra
,
F.-K.
,
Brillert
,
D.
,
Dohmen
,
H. J.
, and
Musch
,
C.
,
2016
, “
Investigation on Flow-Induced Vibrations of a Steam Turbine Inlet Valve Considering Fluid–Structure Interaction Effects
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022507
.
22.
Zheng
,
L.
,
Liu
,
G.
,
Mao
,
J.
,
Yuan
,
Q.
,
Wang
,
S.
,
Wei
,
L.
, and
Wang
,
Z.
,
2015
, “
A Novel Numerical Simulation Method to Verify Turbulence Models for Predicting Flow Patterns in Control Valves
,”
J. Fluid Sci. Technol.
,
10
(
1
), p.
JFST0007
.
23.
Wagner
,
W.
,
Cooper
,
J. R.
,
Dittmann
,
A.
,
Kijima
,
J.
,
Kretzschmar
,
H.-J.
,
Kruse
,
A.
,
Mareš
,
R.
,
Oguchi
,
K.
,
Sato
,
H.
,
Stöcker
,
I.
,
Šifner
,
O.
,
Takaishi
,
Y.
,
Tanishita
,
I.
,
Trübenbach
,
J.
, and
Willkommen
,
T.
,
2000
, “
The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
150
182
.
24.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
25.
Clari
,
M. B.
,
2014
, “
Untersuchung von Instationären Strömungsablösungen in den Diffusoren von Regelungsventilen von Dampfturbinen (Investigation on Unsteady Flow Separations in Diffusers of Steam Turbine Control Valves)
,” Ph.D. thesis, University of the German Federal Armed Forces, Hamburg, Germany (in German).
26.
Wang
,
P.
, and
Liu
,
Y.
,
2017
, “
Influence of a Circular Strainer on Unsteady Flow Behavior in Steam Turbine Control Valves
,”
Appl. Therm. Eng.
,
115
, pp.
463
476
.
27.
Idelchik
,
I. E.
,
2006
,
Handbook of Hydraulic Resistance
,
Jaico Publishing House
,
Mumbai, India
.
28.
Fernholz
,
H.
,
1965
, “
Zur Umlenkung von Freistrahlen an Konvex Gekrümmten Wänden (Coanda-Effeckt) (Deflection of Jets at Convex Shaped Walls [Coanda Effect])
,” Habilitation thesis, Technical University of Berlin, Berlin, (in German).
29.
Newman
,
B. G.
,
1961
, “
The Deflection of Plane Jets by Adjacent Boundary Layers—Coanda Effect
,”
Boundary Layer and Flow Control
, Lachmann, ed.,
Pergamon Press
,
New York
.
30.
Gregory-Smith
,
D. G.
, and
Gilchrist
,
A. R.
,
1987
, “
The Compressible Coanda Wall Jet—An Experimental Study of Jet Structure and Breakaway
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
156
164
.
31.
Woisetschläger
,
J.
,
Jericha
,
H.
,
Sanz
,
W.
, and
Gollner
,
F.
,
1995
, “
Optical Investigations of Transsonic Wall-Jet Film Cooling
,”
ASME
COGEN TURBO POWER, Vienna, Austria, Aug. 23–25, Paper No. 95-CTP-26.
32.
Matsuo
,
S.
,
Setoguchi
,
T.
, and
Kudo
,
T.
,
1998
, “
Study on the Characteristics of Supersonic Coanda Jet
,”
J. Therm. Sci.
,
7
(
3
), pp.
165
175
.
33.
Lowry
,
J. G.
,
Riebe
,
J. M.
, and
Campbell
,
J. P.
,
1957
, “
The Jet Augmented Flap
,” 25th Annual Meeting of the Institute of the Aeronautical Sciences, New York.
34.
Kizilos
,
A. P.
, and
Rose
,
R. E.
,
1968
, “
Experimental Investigations of Flight Control Surfaces Using Modified Air Jets
,” Honeywell Inc., Morris Plains, NJ, Report No. 12055-FRI.
35.
Bevilaqua
,
P. M.
, and
Lee
,
J. D.
,
1980
, “
Development of a Nozzle to Improve the Turning of Supersonic Coanda Jets
,” Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB, OH, Technical Report No.
AFWAL-TR-80-3027
.
36.
Sokolova
,
I. N.
,
1986
, “
Investigation of Supersonic Coanda Flow
,”
Fluid Mech.—Sov. Res.
,
15
(
5
), pp.
1
6
.
37.
Cornelius
,
K. C.
, and
Lucius
,
G. A.
,
1994
, “
Physics of Coanda Jet Detachment at High-Pressure Ratio
,”
J. Aircr.
,
31
(
3
), pp.
591
596
.
You do not currently have access to this content.