This paper deals with rotating effects simulation of steady flows in turbomachinery. To take into account the rotating nature of the flow, the frozen rotor approach is one of the widely used approaches. This technique, known in a more general context as a multiple rotating frame (MRF), consists on building axisymmetric interfaces around the rotating parts and solves for the flow in different frames (static and rotating). This paper aimed to revisit this technique and propose a new algorithm referred to it by a virtual multiple rotating frame (VMRF). The goal is to replace the geometrical interfaces (part of the computer-aided design (CAD)) that separate the rotating parts replaced by the virtual ones created at the solver level by a simple user input of few point locations and/or parameters of basic shapes. The new algorithm renders the MRF method easy to implement, especially for edge-based numerical schemes, and very simple to use. Moreover, it allows avoiding any remeshing (required by the MRF approach) when one needs to change the interface position, shape, or simply remove or add a new one, which frequently happened in practice. Consequently, the new algorithm sensibly reduces the overall computations cost of a simulation. This work is an extension of a first version published in an ASME conference, and the main new contributions are the detailed description of the new algorithm in the context of cell-vertex finite volume method and the validation of the method for viscous flows and the three-dimensional (3D) case which is of significant importance to the method to be attractive for real and industrial applications.

References

References
1.
Adamczyk
,
J.
,
1998
, “
Numerical Simulation of Multi-Stage Turbomachinery Flows
,”
RTO AVT Symposium on Design Principles and Methods for Aircraft Gas Turbine Engines
, Toulouse, France, May 11–15.
2.
Ekici
,
K.
,
Hall
,
K.
, and
Dowell
,
E.
,
2008
, “
Computationally Fast Harmonic Balance Methods for Unsteady Aerodynamic Predictions of Helicopter Rotors
,”
J. Comput. Phys.
,
227
(
12
), pp.
6206
6225
.
3.
Oro
,
J. F.
,
Gonzlez
,
J.
,
Daz
,
K. A.
, and
Coln
,
F.
,
2011
, “
Decomposition of Deterministic Unsteadiness in a Centrifugal Turbomachine: Nonlinear Interactions Between the Impeller Flow and Volute for a Double Suction Pump
,”
ASME J. Fluids Eng.
,
133
(
1
), p.
011103
.
4.
Wang
,
B.
,
Okamoto
,
K.
,
Yamaguchi
,
K. A.
, and
Teramoto
,
S.
,
2014
, “
Loss Mechanisms in Shear-Force Pump With Multiple Corotating Disks
,”
ASME J. Fluids Eng.
,
136
(
8
), p.
081101
.
5.
Zhongjie
,
L.
,
Zhengwei
,
W.
,
Xianzhu
,
W.
, and
Daqing
,
Q.
,
2016
, “
Flow Similarity in the Rotor–Stator Interaction Affected Region in Prototype and Model Francis Pump-Turbines in Generating Mode
,”
ASME J. Fluids Eng.
,
138
(
6
), p.
061201
.
6.
Olander
,
M.
,
2011
, “
CFD Simulation of the Volvo Cars Slotted Walls Wind Tunnel
,”
Master’s thesis
, Chalmers University of Technology, Göteborg, Sweden.
7.
Axerio-Cilies
,
J.
, and
Iaccarino
,
G.
,
2012
, “
An Aerodynamic Investigation of an Isolated Rotating Formula 1 Wheel Assembly
,”
ASME J. Fluids Eng.
,
134
(
12
), p.
121101
.
8.
Drian
,
T.
,
Remaki
,
L.
,
Fellouah
,
H.
, and
Desrocher
,
S. M. A.
,
2013
, “
Aerodynamic Study of a Tricycle Wheel Sub-System for Drag Reduction
,”
ASME J. Fluids Eng.
,
136
(
1
), p.
014502
.
9.
Califano
,
A.
, and
Steen
,
S.
,
2009
, “
Analysis of Different Propeller Ventilation Mechanisms by Means of RANS Simulations
,” First International Symposium on Marine Propulsors (
SMP'09
), Trondheim, Norway, June 22–24, Paper No. TB3-1.
10.
Mirzamoghadam
,
A.
,
Riahi
,
A.
, and
Morris
,
M.
,
2012
, “
High Pressure Turbine Low Radius Radial TOBI Discharge Coefficient Validation Process
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071103
.
11.
Singh
,
K.
,
Mahajanim
,
S.
,
Shenoy
,
K.
,
Patwardhan
,
A.
, and
Ghosh
,
S.
,
2007
, “
CFD Modeling of Pilot-Scale Pump-Mixer: Single-Phase Head and Power Characteristics
,”
Chem. Eng. Sci.
,
62
(
5
), pp.
1308
1322
.
12.
Wadnerkar
,
D.
,
Utikar
,
R.
,
Tade
,
M.
, and
Pareek
,
V.
,
2012
, “
CFD Simulation of Solid–Liquid Stirred Tanks
,”
Adv. Powder Technol.
,
23
(
4
), pp.
445
453
.
13.
Luo
,
L.
,
Gosman
,
A.
, and
Issa
,
I.
,
1994
, “
Prediction of Impeller-Induced Flows in Mixing Vessels Using Multiple Frames of Reference
,”
Inst. Chem. Eng. Symp. Ser.
,
136
, pp.
549
556
.
14.
Warda
,
H.
,
Wahba
,
E.
, and
Selim
,
E.
,
2014
, “
Integral Pumping Devices for Dual Mechanical Seals: Experiments and Numerical Simulations
,”
ASME J. Eng. Gas Turbines Power
,
137
(
2
), p.
022504
.
15.
Zadravec
,
M.
,
Basic
,
S.
, and
Hribersek
,
M.
,
2007
, “
The Influence of Rotating Domain Size in a Rotating Frame of Reference Approach for Simulation of Rotating Impeller in a Mixing Vessel
,”
J. Eng. Sci. Technol.
,
2
(
2
), pp.
126
138
.
16.
Remaki
,
L.
,
Ramezani
,
A.
,
Blanco
,
J.
, and
Antolin
,
J.
,
2014
, “
Efficient Rotating Frame Simulation in Turbomachinery
,”
ASME
Paper No. GT2014-25101.
17.
SALOME,
2014
, “
Salome Platform
,” SALOME, Guyancourt, France, accessed Apr. 17, 2017, http://www.salome-platform.org/
18.
Palacios
,
F.
,
Colonno
,
M.
,
Aranake
,
A.
,
Campos
,
A.
,
Copeland
,
S.
,
Economon
,
T.
,
Lonkar
,
A.
,
Lukaczyk
,
T.
,
Taylor
,
T.
, and
Alonso
,
J.
,
2013
, “
Stanford University Unstructured (SU2): An Open-Source Integrated Computational Environment for Multi-Physics Simulation and Design
,”
AIAA
Paper No. 2013-0287.
19.
Eymard
,
R.
,
Gallouët
,
T.
, and
Herbin
,
R.
,
2000
, “
Finite Volume Methods
,”
Handb. Numer. Anal.
,
7
, pp.
713
1018
.
20.
Sorensen
,
K. A.
,
2002
, “
A Multigrid Accelerated Procedure for the Solution of Compressible Fluid Flows on Unstructured Hybrid Meshes
,”
Ph.D. thesis
, University of Wales, Swansea, UK.
21.
Barth
,
T.
,
1995
,
Aspect of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier–Stokes Equations
(VKI Lecture Series), Vol. 2,
Von Karman Institute for Fluid Dynamics, Rhode Saint Genese
,
Belgium
, pp.
1994
2005
.
22.
Blazek
,
J.
,
2001
,
Computational Fluid Dynamics: Principles and Applications
,
Elsevier
, Oxford, UK.
23.
Sorensen
,
K.
,
Hassan
,
O.
,
Morgan
,
K.
, and
Weatherill
,
N.
,
2003
, “
A Multigrid Accelerated Hybrid Unstructured Mesh Method for 3D Compressible Turbulent Flow
,”
Comput. Mech.
,
31
, pp.
101
114
.
24.
Remaki
,
L.
,
Hassan
,
O.
, and
Morgan
,
K.
,
2010
, “
New Limiter and Gradient Reconstruction Method for HLLC-Finite Volume Scheme to Solve Navier–Stokes Equations
,”
Fifth European Congress on Computational in Fluid Dynamic
(
ECCOMAS
), Lisbon, Portugal, June 14–17, pp.
14
17
.
25.
Remaki
,
l.
,
Hassan
,
O.
, and
Morgan
,
K.
,
2011
, “
Aerodynamic Computations Using a Finite Volume Method With an HLLC Numerical Flux Function
,”
Math. Modell. Nat. Phenom.
,
6
(
3
), pp.
189
212
.
26.
Turkel
,
E.
,
1987
, “
Preconditioned Methods for Solving the Incompressible and Low Speed Compressible Equations
,”
J. Comput. Phys.
,
72
(
2
), pp.
277
298
.
27.
Denton
,
J.
,
2010
, “
Some Limitations of Turbomachinery CFD
,”
ASME
Paper No. GT2010-22540.
28.
Liu
,
Z.
, and
Hill
,
D.
,
2000
, “
Issues Surrounding Multiple Frames of Reference Models for Turbo Compressor Applications
,”
International Compressor Engineering Conference
(
ICEC
), West Lafayette, IN, July 25–28, Paper No. 1369.
29.
Chorin
,
A.
,
1967
, “
A Numerical Method for Solving Incompressible Viscous Flow Problems
,”
J. Comput. Phys
,
2
(
1
), pp.
12
26
.
30.
Moshfeghi
,
M.
,
Song
,
Y.
, and
Xie
,
Y.
,
2012
, “
Effects of Near-Wall Grid Spacing on SST-k-ω Model Using NREL Phase VI Horizontal Axis Wind Turbine
,”
J. Wind Eng. Ind. Aerodyn.
,
107–108
, pp.
94
105
.
31.
Hand
,
M.
,
Simms
,
D.
,
Fingersh
,
L.
,
Jager
,
D.
,
Cotrell
,
J.
,
Schreck
,
S.
, and
Larwood
,
S.
,
2001
, “
Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns
,” National Renewable Energy Laboratory, Golden, Colorado, Technical Report No.
NREL/TP-500-29955
.
32.
ANSYS,
2014
, “
ANSYS FLUENT: Computational Fluid Dynamics Simulator
,” ANSYS, Inc., Canonsburg, PA.
33.
Yelmule
,
M.
, and
VSJ
,
E. A.
,
2013
, “
CFD Predictions of NREL Phase VI Rotor Experiments in NASA/AMES Wind Tunnel
,”
Int. J. Renewable Energy Res.
,
3
(
2
), pp. 261–269.
You do not currently have access to this content.