Eucalyptus and Pine suspensions flow in a pipe was studied experimentally and numerically. Pressure drop was measured for different mean inlet flow velocities. Electrical impedance tomography (EIT), was used to evaluate the prevailing flow regime. Fibers concentration distribution in the pipe cross section and plug evolution were inferred from EIT tomographic images. A modified low-Reynolds-number k–ε turbulence model was applied to simulate the flow of pulp suspensions. The accuracy of the computational fluid dynamics (CFD) predictions was significantly reduced when data in plug regime was simulated. The CFD model applied was initially developed to simulate the flow of Eucalyptus and Pine suspensions in fully turbulent flow regime. Using this model to simulate data in the plug regime leads to an excessive attenuation of turbulence which leads to lower values of pressure drop than the experimental ones. For transition flow regime, the CFD model could be applied successfully to simulate the flow data, similar to what happens for the turbulent regime.

References

1.
Duffy
,
G. G.
,
2006
, “
Measurements, Mechanisms, and Models: Some Important Insights Into the Mechanisms of Flow of Fiber Suspensions
,”
Annu. Trans. Nord. Rheol. Soc.
,
14
, pp.
19
32
.
2.
Kerekes
,
R. J.
,
2006
, “
Rheology of Fibre Suspensions in Papermaking: An Overview of Recent Research
,”
Nord. Pulp Pap. Res. J.
,
21
(
5
), pp.
598
612
.
3.
Bousfiled
,
D. W.
,
2008
, “
Rheological Issues in the Paper Industry
,”
Rheol. Rev.
,
6
, pp.
47
70
.
4.
Derakhshandeh
,
B.
,
Kerekes
,
R. J.
,
Hatzikiriakos
,
S. G.
, and
Bennington
,
C. P. J.
,
2011
, “
Rheology of Pulp Fiber Suspensions: A Critical Review
,”
Chem. Eng. Sci.
,
66
(
15
), pp.
3460
3470
.
5.
Cui
,
H.
, and
Grace
,
J. R.
,
2007
, “
Flow of Pulp Fibre Suspension and Slurries: A Review
,”
Int. J. Multiphase Flow
,
33
(
9
), pp.
921
934
.
6.
Gullichsen
,
J.
, and
Harkonen
,
E.
,
1981
, “
Medium Consistency Technology—I: Fundamental Data
,”
TAPPI J.
,
64
(
6
), pp.
69
72
.
7.
Ventura
,
C.
,
Garcia
,
F.
,
Ferreira
,
P.
, and
Rasteiro
,
M.
,
2008
, “
Flow Dynamics of Pulp Fiber Suspensions
,”
TAPPI J.
,
7
(
8
), pp.
20
26
.
8.
Lundell
,
F.
,
Söderberg
,
L. D.
, and
Alfredsson
,
P. H.
,
2011
, “
Fluid Mechanics of Papermaking
,”
Annu. Rev Fluid Mech.
,
43
(
1
), pp.
195
217
.
9.
Heikkinen
,
L.
,
Kourunen
,
J.
,
Paananen
,
P.
,
Peltonen
,
K.
,
Käyhkö
,
J.
, and
Vauhkonen
,
M.
,
2010
, “
Electrical Resistance Tomography Technique in Pulp and Paper Industry
,”
ERCOFTAC Bull.
,
84
, pp.
9
11
.
10.
Faia
,
P. M.
,
Rasteiro
,
M. G.
,
Garcia
,
F.
,
Silva
,
R.
,
Costa
,
H.
, and
Branco
,
B.
,
2015
, “
Electrical Tomography Use for Imaging Pulp Suspensions Flow in Pipes: Restraints and Evolution
,”
COST Action FP1005 Final Conference
, Trondheim, Norway, June 9–11, pp. 57–60.
11.
Fock
,
H.
,
Claesson
,
J.
,
Rasmuson
,
A.
, and
Wikström
,
T.
,
2011
, “
Near Wall Effects in the Plug Flow of Pulp Suspensions
,”
Can. J. Chem. Eng.
,
89
(
5
), pp.
1207
1216
.
12.
Claesson
,
J.
,
Wikström
,
T.
, and
Rasmuson
,
A.
,
2012
, “
An Experimental Study of the Turbulent Mixing Layer in Concentrated Fiber Suspensions
,”
Nord. Pulp Pap. Res. J.
,
27
(
5
), pp.
940
946
.
13.
Melander
,
O.
, and
Rasmuson
,
A.
,
2004
, “
PIV Measurements of Velocities and Concentrations of Wood Fibres in Pneumatic Transport
,”
Exp. Fluids
,
37
(
2
), pp.
293
300
.
14.
Tozzi
,
E. J.
,
Lavenson
,
D. M.
,
McCarthy
,
M. J.
, and
Powell
,
R. L.
,
2013
, “
Effect of Fiber Length, Flow Rate, and Concentration on Velocity Profiles of Cellulosic Fiber Suspensions
,”
Acta Mech.
,
224
(
10
), pp.
2301
2310
.
15.
Li
,
T.-Q.
,
Seymour
,
J. D.
,
Powell
,
R. L.
,
McCarthy
,
M. J.
,
McCarthy
,
K. L.
, and
Ödberg
,
L.
,
1994
, “
Visualization of Flow Patterns of Cellulose Fiber Suspensions by NMR Imaging
,”
AIChE J.
,
40
(
8
), pp.
1408
1411
.
16.
Wiklund
,
J. A.
,
Stading
,
M.
,
Pettersson
,
A. J.
, and
Rasmuson
,
A.
,
2006
, “
A Comparative Study of UVP and LDA Techniques for Pulp Suspensions in Pipe Flow
,”
AIChE J.
,
52
(
2
), pp.
484
495
.
17.
Fock
,
H.
,
Wiklund
,
J.
, and
Rasmuson
,
A.
,
2009
, “
Ultrasound Velocity Profile (UVP) Measurements of Pulp Suspension Flow Near the Wall
,”
J. Pulp Pap. Sci.
,
35
(
1
), pp.
26
33
.
18.
Claesson
,
J.
,
Rasmuson
,
A.
,
Wiklund
,
J.
, and
Wikström
,
T.
,
2013
, “
Measurement and Analysis of Flow of Concentrated Fiber Suspensions Through a 2-D Sudden Expansion Using UVP
,”
AIChE J.
,
59
(
3
), pp.
1012
1021
.
19.
Kotzé
,
R.
,
Wiklund
,
J.
, and
Haldenwang
,
R.
,
2016
, “
Application of Ultrasound Doppler Technique for In-Line Rheological Characterization and Flow Visualization of Concentrated Suspensions
,”
Can. J. Chem. Eng.
,
94
(
6
), pp.
1066
1075
.
20.
Faia
,
P. M.
,
Krochak
,
P.
,
Costa
,
H.
,
Lundell
,
F.
,
Silva
,
R.
,
Garcia
,
F. A. P.
, and
Rasteiro
,
M. G.
,
2016
, “
A Comparative Study of Magnetic Resonance Imaging, Electrical Impedance Tomography, and Ultrasonic Doppler Velocimetry for Semi-Dilute Fiber Flow Suspension Characterisation
,”
Int. J. Comput. Methods Exp. Meas.
,
4
(
2
), pp.
165
175
.
21.
Krochak
,
P. J.
,
Olson
,
J. A.
, and
Martinez
,
D. M.
,
2009
, “
Fiber Suspension Flow in a Tapered Channel: The Effect of Flow/Fiber Coupling
,”
Int. J. Multiphase Flow
,
35
(
7
), pp.
676
688
.
22.
Latz
,
A.
,
Strautins
,
U.
, and
Niedziela
,
D.
,
2010
, “
Comparative Numerical Study of Two Concentrated Fiber Suspension Models
,”
J. Non-Newtonian Fluid Mech.
,
165
(
13–14
), pp.
764
781
.
23.
Sattari
,
M.
,
Tuomela
,
J.
,
Niskanen
,
H.
, and
Hämäläinen
,
J.
,
2014
, “
Coupled Simulation of the Spherical Angles of Rigid Fibres by Using a Fibre Orientation Probability Distribution Model
,”
Int. J. Multiphase Flow
,
65
, pp.
61
67
.
24.
Yamamoto
,
S.
, and
Matsuoka
,
T.
,
1993
, “
A Method for Dynamic Simulation of Rigid and Flexible Fibers in a Flow Field
,”
J. Chem. Phys.
,
98
(
1
), pp.
644
650
.
25.
Kondora
,
G.
, and
Asendrych
,
D.
,
2013
, “
Modelling the Dynamics of Flexible and Rigid Fibers
,”
Chem. Process Eng.
,
34
(
1
), pp.
87
100
.
26.
Lindström
,
S. B.
, and
Uesaka
,
T.
,
2007
, “
Simulation of the Motion of Flexible Fibers in Viscous Fluid Flow
,”
Phys. Fluids
,
19
(
11
), p.
113307
.
27.
Lindström
,
S. B.
, and
Uesaka
,
T.
,
2008
, “
Simulation of Semidilute Suspensions of Non-Brownian Fibers in Shear Flow
,”
J. Chem. Phys.
,
128
(
2
), p.
024901
.
28.
Mäkipere
,
K.
, and
Zamankhan
,
P.
,
2007
, “
Simulation of Fiber Suspensions—A Multiscale Approach
,”
ASME J. Fluids Eng.
,
129
(
4
), pp.
446
456
.
29.
Challabotla
,
N. R.
,
Zhao
,
L.
, and
Andersson
,
H. I.
,
2016
, “
On Fiber Behavior in Turbulent Vertical Channel Flow
,”
Chem. Eng. Sci.
,
153
, pp.
75
86
.
30.
Steen
,
M.
,
1991
, “
Modeling Fiber Flocculation in Turbulent Flow: A Numerical Study
,”
TAPPI J.
,
74
(
9
), pp.
175
182
.
31.
Huhtanen
,
J.-P. T.
, and
Karvinen
,
R. J.
,
2005
, “
Interaction of Non-Newtonian Fluid Dynamics and Turbulence on the Behavior of Pulp Suspension Flows
,”
Annu. Trans. Nord. Rheol. Soc.
,
13
, pp.
177
186
.
32.
Ventura
,
C. A. F.
,
Garcia
,
F. A. P.
,
Ferreira
,
P. J.
, and
Rasteiro
,
M. G.
,
2011
, “
Modeling the Turbulent Flow of Pulp Suspensions
,”
Ind. Eng. Chem. Res.
,
50
(
16
), pp.
9735
9742
.
33.
Rawat
,
A.
,
Singh
,
S. N.
, and
Seshadri
,
V.
,
2016
, “
Computational Methodology for Determination of Head Loss in Both Laminar and Turbulent Regimes for the Flow of High Concentration Coal Ash Slurries Through Pipelines
,”
Part. Sci. Technol.
,
34
(
3
), pp.
289
300
.
34.
Cotas
,
C. I. P.
,
2015
, “
Modelling of Fiber Suspensions Flow in Pipes
,”
Ph.D. dissertation
, University of Coimbra, Coimbra, Portugal.
35.
Zhou
,
S.
, and
Halttunen
,
J.
,
2003
, “
Consistency Profile Measurement in Pulp Based on Electrical Impedance Tomography
,”
XVII IMEKO World Congress: Metrology in the 3rd Millennium
, Dubrovnik, Croatia, June 22–27, pp. 1157–1160.
36.
Cheng
,
K.-S.
,
Isaacson
,
D.
,
Newell
,
J. C.
, and
Gisser
,
D. G.
,
1989
, “
Electrode Models for Electric Current Computed Tomography
,”
IEEE Trans. Biomed. Eng.
,
36
(
9
), pp.
918
924
.
37.
Polydorides
,
N.
, and
Lionheart
,
W. R. B.
,
2002
, “
A Matlab Toolkit for Three-Dimensional Electrical Impedance Tomography: A Contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software Project
,”
Meas. Sci. Technol.
,
13
(
12
), pp.
1871
1883
.
38.
Ventura
,
C.
,
Blanco
,
A.
,
Negro
,
C.
,
Ferreira
,
P.
,
Garcia
,
F.
, and
Rasteiro
,
M.
,
2007
, “
Modeling Pulp Fiber Suspension Rheology
,”
TAPPI J.
,
6
(
7
), pp.
17
23
.
39.
Blanco
,
A.
,
Negro
,
C.
,
Fuente
,
E.
, and
Tijero
,
J.
,
2007
, “
Rotor Selection for a Searle-Type Device to Study the Rheology of Paper Pulp Suspensions
,”
Chem. Eng. Process.
,
46
(
1
), pp.
37
44
.
40.
Olson
,
J. A.
,
1996
, “
The Effect of Fibre Length on Passage Through Narrow Apertures
,”
Ph.D. dissertation
, University of British Columbia, Vancouver, Canada.
41.
Dong
,
S.
,
Feng
,
X.
,
Salcudean
,
M.
, and
Gartshore
,
I.
,
2003
, “
Concentration of Pulp Fibers in 3D Turbulent Channel Flow
,”
Int. J. Multiphase Flow
,
29
(
1
), pp.
1
21
.
42.
Chang
,
K. C.
,
Hsieh
,
W. D.
, and
Chen
,
C. S.
,
1995
, “
A Modified Low-Reynolds-Number Turbulence Model Applicable to Recirculating Flow in Pipe Expansion
,”
ASME J. Fluids Eng.
,
117
(
3
), pp.
417
423
.
43.
Hsieh
,
W. D.
, and
Chang
,
K. C.
,
1996
, “
Calculation of Wall Heat Transfer in Pipe-Expansion Turbulent Flows
,”
Int. J. Heat Mass Transfer
,
39
(
18
), pp.
3813
3822
.
44.
Cotas
,
C.
,
Silva
,
R.
,
Garcia
,
F.
,
Faia
,
P.
,
Asendrych
,
D.
, and
Rasteiro
,
M. G.
,
2015
, “
Application of Different Low-Reynolds k–ε Turbulence Models to Model the Flow of Concentrated Pulp Suspensions in Pipes
,”
Procedia Eng.
,
102
, pp.
1326
1335
.
45.
Malin
,
M. R.
,
1997
, “
Turbulent Pipe Flow of Power-Law Fluids
,”
Int. Commun. Heat Mass Transfer
,
24
(
7
), pp.
977
988
.
46.
Bartosik
,
A.
,
2010
, “
Application of Rheological Models in Prediction of Turbulent Slurry Flow
,”
Flow Turbul. Combust.
,
84
(
2
), pp.
277
293
.
47.
Bartosik
,
A.
,
2011
, “
Simulation of the Friction Factor in a Yield-Stress Slurry Flow Which Exhibits Turbulence Damping Near the Pipe Wall
,”
J. Theor. Appl. Mech.
,
49
(
2
), pp.
283
300
.
48.
Bartosik
,
A.
,
2011
, “
Mathematical Modeling of Slurry Flow With Medium Solid Particles
,”
Mathematical Models and Methods in Modern Science
,
WSEAS Press
,
Tenerife, Spain
.
49.
Cotas
,
C.
,
Asendrych
,
D.
, and
Rasteiro
,
M. G.
,
2015
, “
Numerical Simulation of Turbulent Pulp Flow of Concentrated Suspensions: Influence of the Non-Newtonian Properties of the Pulp
,”
Part. Sci. Technol.
,
34
(
4
), pp.
442
452
.
50.
Cruz
,
D. O. A.
, and
Pinho
,
F. T.
,
2003
, “
Turbulent Pipe Flow Predictions With a Low Reynolds Number k–ε Model for Drag Reducing Fluids
,”
J. Non-Newtonian Fluid Mech.
,
114
(
2–3
), pp.
109
148
.
51.
ANSYS
,
2010
, “
ANSYS FLUENT Documentation, Release 13.0
,” Ansys Inc., Canonsburg, PA.
52.
GAMBIT
,
2007
, “
GAMBIT Documentation, Release 2.4
,”
Ansys Inc.
, Lebanon, NH.
53.
Haavisto
,
S.
,
Salmela
,
J.
,
Jäsberg
,
A.
,
Saarinen
,
T.
,
Karppinen
,
A.
, and
Koponen
,
A.
,
2015
, “
Rheological Characterization of Microfibrillated Cellulose Suspension Using Optical Coherence Tomography
,”
TAPPI J.
,
14
(
5
), pp.
291
302
.
54.
Jäsberg
,
A.
,
2007
, “
Flow Behavior of Fiber Suspensions in Straight Pipes: New Experimental Techniques and Multiphase Modeling
,”
Ph.D. dissertation
, Faculty of Mathematics and Science, University of Jyväskylä, Jyväskylä, Finland.
55.
Mandø
,
M.
,
Lightstone
,
M. F.
,
Rosendahl
,
L.
,
Yin
,
C.
, and
Sørensen
,
H.
,
2009
, “
Turbulence Modulation in Dilute Particle-Laden Flow
,”
Int. J. Heat Fluid Flow
,
30
(
2
), pp.
331
338
.
You do not currently have access to this content.