This paper considers the effects of multiphase parameters on a shock-driven particle-laden hydrodynamic instability using simulations performed with the hydrocode FLAG, developed at Los Alamos National Laboratory. The classic sinusoidal interface common in instability literature is created using water particles seeded in a nitrogen–water vapor mixture. The simulations model a shock tube environment as the computational domain, to guide future experimentation. Multiphase physics in FLAG include momentum and energy coupling, with this paper discussing the addition of mass coupling through evaporation. The multiphase effects are compared to a dusty gas approximation, which ignores multiphase components, as well as to a multiphase case which ignores evaporation. Evaporation is then further explored by artificially changing parameters which effect the rate of evaporation as well as the amount of total evaporation. Among all these experiments, the driving force of the hydrodynamic instability is a shock wave with a Mach number of 1.5 and a system Atwood number of 0.11 across the interface. The analysis is continued into late time for select cases to highlight the effects of evaporation during complex accelerations, presented here as a reshock phenomenon. It was found that evaporation increases the circulation over nonevaporating particles postshock. Evaporation was also shown to change the postshock Atwood number. Reshock showed that the multiphase instabilities exhibited additional circulation deposition over the dusty gas approximation. Mixing measures were found to be affected by evaporation, with the most significant effects occurring after reshock.

References

References
1.
Wohletz
,
K. H.
,
1983
, “
Mechanisms of Hydrovolcanic Pyroclast Formation: Grain-Size, Scanning Electron Microscopy, and Experimental Studies
,”
J. Volcanol. Geotherm. Res.
,
17
(
1–4
), pp.
31
63
.
2.
Wróblewski
,
W.
,
Dykas
,
S.
,
Gardzilewicz
,
A.
, and
Kolovratnik
,
M.
,
2009
, “
Numerical and Experimental Investigations of Steam Condensation in LP Part of a Large Power Turbine
,”
ASME J. Fluids Eng.
,
131
(
4
), p.
041301
.
3.
Colarossi
,
M.
,
Trask
,
N.
,
Schmidt
,
D. P.
, and
Bergander
,
M. J.
,
2012
, “
Multidimensional Modeling of Condensing Two-Phase Ejector Flow
,”
Int. J. Refrig.
,
35
(
2
), pp.
290
299
.
4.
Silvia
,
D. W.
,
Smith
,
B. D.
, and
Shull
,
J. M.
,
2012
, “
Numerical Simulations of Supernova Dust Destruction. II. Metal-Enriched Ejecta Knots
,”
Astrophys. J.
,
748
(
1
), pp.
12
21
.
5.
Cherchneff
,
I.
,
2014
, “
Dust Production in Supernovae
,” preprint
arXiv:1405.1216
.
6.
McFarland
,
J. A.
,
Black
,
W. J.
,
Dahal
,
J.
, and
Morgan
,
B. E.
,
2016
, “
Computational Study of the Shock Driven Instability of a Multiphase Particle-Gas System
,”
Phys. Fluids
,
28
(
2
), p.
024105
.
7.
Richtmyer
,
R. D.
,
1960
, “
Taylor Instability in Shock Acceleration of Compressible Fluids
,”
Commun. Pure Appl. Math.
,
13
(
2
), pp.
297
319
.
8.
Meshkov
,
E. E.
,
1969
, “
Instability of the Interface of Two Gases Accelerated by a Shock Wave
,”
Fluid Dyn.
,
4
(
5
), pp.
101
104
.
9.
Marble
,
F. E.
,
1970
, “
Dynamics of Dusty Gases
,”
Annu. Rev. Fluid Mech.
,
2
(
1
), pp.
397
446
.
10.
Vorobieff
,
P.
,
Anderson
,
M.
,
Conroy
,
J.
,
White
,
R.
,
Truman
,
C. R.
, and
Kumar
,
S.
,
2011
, “
Vortex Formation in a Shock-Accelerated Gas Induced by Particle Seeding
,”
Phys. Rev. Lett.
,
106
(
18
), p.
184503
.
11.
Anderson
,
M.
,
Vorobieff
,
P.
,
Truman
,
C. R.
,
Corbin
,
C.
,
Kuehner
,
G.
,
Wayne
,
P.
,
Conroy
,
J.
,
White
,
R.
, and
Kuman
,
S.
,
2015
, “
An Experimental and Numerical Study of Shock Interaction With a Gas Column Seeded With Droplets
,”
Shock Waves
,
25
(
2
), pp.
107
125
.
12.
Ukai
,
S.
,
Balakrishnan
,
K.
, and
Menon
,
S.
,
2010
, “
On Richtmyer–Meshkov Instability in Dilute Gas-Particle Mixtures
,”
Phys. Fluids
,
22
(
10
), p.
104103
.
13.
Schulz
,
J. C.
,
Gottiparthi
,
K. C.
, and
Menon
,
S.
,
2013
, “
Richtmyer–Meshkov Instability in Dilute Gas-Particle Mixtures With Re-Shock
,”
Phys. Fluids
,
25
(
11
), p.
114105
.
14.
Balakumar
,
B. J.
,
Orlicz
,
G. C.
,
Ristorcelli
,
J. R.
,
Balasubramanian
,
S.
,
Prestridge
,
K. P.
, and
Tomkins
,
C. D.
,
2012
, “
Turbulent Mixing in a Richtmyer–Meshkov Fluid Layer After Reshock: Velocity and Density Statistics
,”
J. Fluid Mech.
,
696
, pp.
67
93
.
15.
McFarland
,
J. A.
,
Greenough
,
J. A.
, and
Ranjan
,
D.
,
2011
, “
Computational Parametric Study of a Richtmyer–Meshkov Instability for an Inclined Interface
,”
Phys. Rev. E
,
84
(
2
), p.
026303
.
16.
Chapman
,
P. R.
, and
Jacobs
,
J. W.
,
2006
, “
Experiments on the Three-Dimensional Incompressible Richtmyer–Meshkov Instability
,”
Phys. Fluids
,
18
(
7
), p.
074101
.
17.
Robey
,
H. F.
,
Kane
,
J. O.
,
Remington
,
B. A.
,
Drake
,
R. P.
,
Hurricane
,
O. A.
,
Louis
,
H.
,
Wallace
,
R. J.
,
Knauer
,
J.
,
Keiter
,
P.
,
Arnett
,
D.
, and
Ryutov
,
D. D.
,
2001
, “
An Experimental Testbed for the Study of Hydrodynamic Issues in Supernovae
,”
Phys. Plasmas
,
8
(
5
), pp.
2446
2453
.
18.
Ranjan
,
D.
,
Oakley
,
J.
, and
Bonazza
,
R.
,
2011
, “
Shock-Bubble Interactions
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
117
140
.
19.
Tomkins
,
C. D.
,
Balakumar
,
B. J.
,
Orlicz
,
G.
,
Prestridge
,
K. P.
, and
Ristorcelli
,
J. R.
,
2013
, “
Evolution of the Density Self-Correlation in Developing Richtmyer–Meshkov Turbulence
,”
J. Fluid Mech.
,
735
, pp.
288
306
.
20.
Motl
,
B.
,
Oakley
,
J.
,
Ranjan
,
D.
,
Weber
,
C.
,
Anderson
,
M.
, and
Bonazza
,
R.
,
2009
, “
Experimental Validation of a Richtmyer–Meshkov Scaling Law Over Large Density Ratio and Shock Strength Ranges
,”
Phys. Fluids
,
21
(
12
), p.
126102
.
21.
Long
,
C. C.
,
Krivets
,
V. V.
,
Greenough
,
J. A.
, and
Jacobs
,
J. W.
,
2009
, “
Shock Tube Experiments and Numerical Simulation of the Single-Mode Three-Dimensional Richtmyer–Meshkov Instability
,”
Phys. Fluids
,
21
(
11
), p.
114104
.
22.
McFarland
,
J.
,
Greenough
,
J. A.
, and
Ranjan
,
D.
,
2013
, “
Investigation of the Initial Perturbation Amplitude for the Inclined Interface Richtmyer–Meshkov Instability
,”
Phys. Scr.
,
T155
, p.
014014
.
23.
McFarland
,
J.
,
Reilly
,
D.
,
Creel
,
S.
,
McDonald
,
C.
,
Finn
,
T.
, and
Ranjan
,
D.
,
2014
, “
Experimental Investigation of the Inclined Interface Richtmyer–Meshkov Instability Before and After Reshock
,”
Exp. Fluids
,
55
(
1
), pp.
1640
1674
.
24.
McFarland
,
J. A.
,
Greenough
,
J. A.
, and
Ranjan
,
D.
,
2014
, “
Simulations and Analysis of the Reshocked Inclined Interface Richtmyer–Meshkov Instability for Linear and Nonlinear Interface Perturbations
,”
ASME J. Fluids Eng.
,
136
(
7
), p.
071203
.
25.
Bernard
,
T.
,
Truman
,
C. R.
,
Vorobieff
,
P.
,
Corbin
,
C.
,
Wayne
,
P. J.
,
Kuehner
,
G.
,
Anderson
,
M.
, and
Kumar
,
S.
,
2014
, “
Observation of the Development of Secondary Features in a Richtmyer–Meshkov Instability Driven Flow
,”
ASME J. Fluids Eng.
,
137
(
1
), p.
011206
.
26.
Wilson
,
B. M.
,
Mejia-Alvarez
,
R.
, and
Prestridge
,
K. P.
,
2016
, “
Single-Interface Richtmyer–Meshkov Turbulent Mixing at the Los Alamos Vertical Shock Tube
,”
ASME J. Fluids Eng.
,
138
(
7
), p.
070901
.
27.
Shilling
,
O.
,
Latini
,
M.
, and
Don
,
W. S.
,
2007
, “
Physics of Reshock and Mixing in Single-Mode Richtmyer–Meshkov Instability
,”
Phys. Rev. E
,
76
(
2
), p.
026319
.
28.
Cook
,
A. W.
,
Cabot
,
W.
, and
Miller
,
P. L.
,
2004
, “
The Mixing Transition in Rayleigh–Taylor Instability
,”
J. Fluid Mech.
,
511
, pp.
332
362
.
29.
Zabusky
,
N. J.
,
Kotelnikov
,
A. D.
,
Gulak
,
Y.
, and
Peng
,
G.
,
2003
, “
Amplitude Growth Rate of a Richtmyer–Meshkov Unstable Two-Dimensional Interface to Intermediate Times
,”
J. Fluid Mech.
,
475
, pp.
147
162
.
30.
Olson
,
B. J.
, and
Greenough
,
J. A.
,
2014
, “
Comparison of Two- and Three-Dimensional Simulations of Miscible Richtmyer–Meshkov Instability With Multimode Initial Conditions
,”
Phys. Fluids
,
26
(
10
), p.
101702
.
31.
Miles
,
R.
,
Blue
,
B.
,
Edwards
,
M. J.
,
Greenough
,
J. A.
,
Hansen
,
J. F.
,
Robey
,
H. F.
,
Drake
,
R. P.
,
Kuranz
,
C.
, and
Leibrandt
,
D. R.
,
2005
, “
Transition to Turbulence and Effect of Initial Conditions on Three-Dimensional Compressible Mixing in Planar Blast-Wave-Driven-Systems
,”
Phys. Plasmas
,
12
(
5
), p.
056317
.
32.
McFarland
,
J. A.
,
Reilly
,
D.
,
Black
,
W.
,
Greenough
,
J. A.
, and
Ranjan
,
D.
,
2015
, “
Modal Interactions Between a Large Wave-Length Inclined Interface and Small-Wavelength Multimode Perturbations in a Richtmyer–Meshkov Instability
,”
Phys. Rev. E
,
92
(
1
), p.
013023
.
33.
Reilly
,
D.
,
McFarland
,
J. A.
,
Mohaghar
,
M.
, and
Ranjan
,
D.
,
2015
, “
The Effects of Initial Conditions and Circulation Deposition on the Inclined-Interface Reshocked Richtmyer–Meshkov Instability
,”
Exp. Fluids
,
56
(
8
), pp.
168
184
.
34.
Kane
,
J.
,
Drake
,
R. P.
, and
Remington
,
B. A.
,
1999
, “
An Evaluation of the Richtmyer–Meshkov Instability in Supernova Remnant Formation
,”
Astrophys. J.
,
511
(
1
), pp.
335
340
.
35.
Taylor
,
G.
,
1950
, “
The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes
,”
Proc. R. Soc. London, Ser. A
,
201
(
1065
), pp.
192
196
.
36.
Burton
,
D. E.
,
1992
, “
Connectivity Structures and Differencing Techniques for Staggered-Grid Free-Lagrange Hydrodynamics
,”
7th International Association of Mathematics and Computer Simulation (IMACS PDE7)
, Rutgers University, New Brunswick, NJ, June 22–24, Paper No.
UCRL-JC-110555
.
37.
Burton
,
D. E.
,
1994
, “
Consistent Finite-Volume Discretization of Hydrodynamic Conservation Laws for Unstructured Grids
,” Lawrence Livermore National Laboratory, Livermore, CA, Contract No.
W-7405-ENG-48
.
38.
Boris
,
J. P.
, and
Book
,
D. L.
,
1973
, “
Flux-Corrected Transport. I. SHASTA, A Fluid Transport Algorithm That Works
,”
J. Comput. Phys.
,
11
(
1
), pp.
38
69
.
39.
Fung
,
J.
,
Harrison
,
A. K.
,
Chitanvis
,
S.
, and
Margulies
,
J.
,
2012
, “
Ejecta Source and Transport Modeling in the FLAG Hydrocode
,” Los Alamos National Laboratory, Los Alamos, NM, Technical Report No.
LA-UR-11-04992
.
40.
Harrison
,
A.
, and
Fung
,
J.
,
2009
, “
Ejecta in the FLAG Hydrocode
,” Numerical Methods for Multi-Material Fluids and Structures, Pavia.
41.
Zalesak
,
S. T.
,
1979
, “
Fully Multidimensional Flux-Corrected Transport Algorithms for Fluids
,”
J. Comput. Phys.
,
31
(
3
), pp.
335
362
.
42.
Barth
,
T. J.
, and
Jespersen
,
D. C.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
27th Aerospace Sciences Meeting
, Reno, NV, Jan. 9–12.
43.
Youngs
,
D. L.
,
1982
, “
Time-Dependent Multi-Material Flow With Large Fluid Distortion
,”
Numerical Methods For Fluid Dynamics
, K. W. Morton and M. J. Baines, Eds., Academic Press, New York, pp. 273–285.
44.
Andrews
,
M.
, and
O’Rourke
,
P.
,
1996
, “
The Multiphase Particle-in-Cell (MP-PIC) Method for Dense Particle Flows
,”
Int. J. Multiphase Flow
,
22
(
2
), pp.
379
402
.
45.
Fuks
,
N. A.
,
1955
, “
The Mechanics of Aerosols
,” Chemical Warfare Labs Army Chemical Center, MD, Standard No. CWL-SP-4-12.
46.
Ranz
,
W. E.
, and
Marshall
,
W. R.
, Jr.,
1952
, “
Evaporation From Drops
,”
Chem. Eng. Prog.
,
48
(
3
), pp.
141
146
.
47.
Cloutman
,
L. D.
,
1988
, “
Analytical Solutions for the Trajectories and Thermal Histories of Unforced Particulates
,”
Am. J. Phys.
,
56
(
7
), pp.
643
645
.
48.
Crowe
,
C. T.
,
Schwarzkopf
,
J. D.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
,
2011
,
Multiphase Flows With Droplets and Particles
, 2nd ed.,
CRC Press
,
Salem, MA
.
You do not currently have access to this content.