A transport-equation-based homogeneous cavitation model previously assessed and validated against experimental data is used to investigate and explain the efficiency alteration mechanisms in Kaplan turbines. On the one hand, it is shown that the efficiency increase is caused by a decrease in energy dissipation due to a decreased turbulence production driven by a drop in fluid density associated with the cavitation region. This region also entails an increase in torque, caused by the modification of the pressure distribution throughout the blade, which saturates on the suction side. On the other hand, the efficiency drop is shown to be driven by a sharp increase in turbulence production at the trailing edge. An analysis of the pressure coefficient distribution explains such behavior as being a direct consequence of the pressure-altering cavitation region reaching the trailing edge. Finally, even though the efficiency alteration behavior is very sensitive to the dominant cavitation type, it is demonstrated that the governing mechanisms are invariant to it.

References

References
1.
Keck
,
H.
, and
Sick
,
M.
,
2008
, “
Thirty Years of Numerical Flow Simulation in Hydraulic Turbomachines
,”
Acta Mech.
,
201
(
1
), pp.
211
229
.
2.
Ait Bouziad
,
Y.
,
2005
, “
Physical Modelling of Leading Edge Cavitation: Computational Methodologies and Application to Hydraulic Machinery
,”
Ph.D. thesis
, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
3.
Hirschi
,
R.
,
Dupont
,
P.
,
Avellan
,
F.
,
Favre
,
J.
,
Guelich
,
J.
, and
Parkinson
,
E.
,
1998
, “
Centrifugal Pump Performance Drop Due to Leading Edge Cavitation: Numerical Predictions Compared With Model Tests
,”
ASME J. Fluids Eng.
,
120
(
4
), pp.
705
711
.
4.
Bakir
,
F.
,
Rey
,
R.
,
Gerber
,
A. G.
,
Belamri
,
T.
, and
Hutchinson
,
B.
,
2004
, “
Numerical and Experimental Investigations of the Cavitating Behavior of an Inducer
,”
Int. J. Rotating Mach.
,
10
(
1
), pp.
15
25
.
5.
Zhang
,
D.
,
Shi
,
W.
,
Pan
,
D.
, and
Dubuisson
,
M.
,
2015
, “
Numerical and Experimental Investigation of Tip Leakage Vortex Cavitation Patterns and Mechanisms in an Axial Pump
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121103
.
6.
Zhang
,
D.
,
Shi
,
L.
,
Shi
,
W.
,
Zhao
,
R.
,
Wang
,
H.
, and
van Esch
,
B.
,
2015
, “
Numerical Analysis of Unsteady Tip Leakage Vortex Cavitation Cloud and Unstable Suction-Side-Perpendicular Cavitating Vortices in an Axial Flow Pump
,”
Int. J. Multiphase Flow
,
77
, pp.
244
259
.
7.
Kunz
,
R.
,
Lindau
,
J.
,
Kaday
,
T.
, and
Peltier
,
L.
,
2003
, “
Unsteady RANS and Detached Eddy Simulations of Cavitating Flow Over a Hydrofoil
,”
Fifth International Symposium on Cavitation
(
CAV2003
), Osaka, Japan, Nov. 1–4, Paper No. Cav03-OS-1-12.
8.
Su
,
W. T.
,
Li
,
X. B.
,
Li
,
F. C.
,
Han
,
W. F.
,
Wei
,
X. Z.
, and
Guo
,
J.
,
2013
, “
Large Eddy Simulation of Pressure Fluctuations at Off-Design Condition in a Francis Turbine Based on Cavitation Model
,”
6th International Conference on Pumps and Fans With Compressors and Wind Turbines
,
IOP
Conference Series: Materials Science and Engineering, Vol.
52
, Paper No. 022032.
9.
Frank
,
T.
,
Lifante
,
C.
,
Jebauer
,
S.
,
Kuntz
,
M.
, and
Rieck
,
K.
,
2007
, “
CFD Simulation of Cloud and Tip Vortex Cavitation on Hydrofoils
,”
6th International Conference on Multiphase Flow
, Leipzig, Germany, July 9–13, Paper No. 134.
10.
Liu
,
H.
,
Wang
,
Y.
,
Liu
,
D.
,
Yuan
,
S.
, and
Wang
,
J.
,
2013
, “
Assessment of a Turbulence Model for Numerical Predictions of Sheet-Cavitating Flows in Centrifugal Pumps
,”
J. Mech. Sci. Technol.
,
27
(
9
), pp.
2743
2750
.
11.
Vallier
,
A.
,
2013
, “
Simulations of Cavitation–From the Large Vapour Structures to the Small Bubble Dynamics
,”
Ph.D. thesis
, Lund University, Lund, Sweden.
12.
Arn
,
C.
,
Avellan
,
F.
, and
Dupont
,
P.
,
1998
, “
Prediction of Francis Turbines Efficiency Alteration by Travelling Bubble Cavitation
,” 19th
IAHR
Symposium
, Singapore, Sept. 9–11, pp.
534
543
.
13.
Franc
,
J. P.
,
Avellan
,
F.
,
Belahadji
,
B.
,
Billard
,
J. Y.
,
Briançon-Marjollet
,
L.
,
Fréchou
,
D.
,
Fruman
,
D.
,
Karimi
,
A.
,
Kueny
,
J. L.
, and
Michel
,
J. M.
,
1995
,
La Cavitation-Mécanismes physiques et aspects industriels
,
Presses Universitaires de Grenoble
.
14.
Wu
,
Y.
,
Liu
,
S.
,
Dou
,
H.
, and
Zhang
,
L.
,
2011
, “
Simulations of Unsteady Cavitating Turbulent Flow in a Francis Turbine Using RANS Method and the Improved Mixture Model of Two-Phase Flows
,”
Eng. Comput.
,
27
(
3
), pp.
235
250
.
15.
Liu
,
S.
,
Zhang
,
L.
,
Nishi
,
M.
, and
Wu
,
Y.
,
2009
, “
Cavitating Turbulent Flow Simulation in a Francis Turbine Based on Mixture Model
,”
ASME J. Fluids Eng.
,
131
(
5
), p.
051302
.
16.
Hauet
,
G.
,
Ségoufin
,
C.
, and
Hai-Trieu
,
P.
,
2015
, “
Numerical Prediction of Cavitation in Kaplan Turbines
,” SHF Hydraulic Machinery and Cavitation Workshop, Nantes, France, Paper No. 15.
17.
Leguizamón
,
S.
,
2014
, “
Assessment and Validation of Numerical Simulation Methodologies for the Prediction of Cavitation in Hydraulic Turbomachines
,” Master's thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
18.
Decaix
,
J.
, and
Goncalvès
,
E.
,
2013
, “
Compressible Effects Modeling in Turbulent Cavitating Flows
,”
Eur. J. Mech. B
,
39
, pp.
11
31
.
19.
Raw
,
M.
,
1996
, “
Robustness of Coupled Algebraic Multigrid for the Navier–Stokes Equations
,”
AIAA
Paper No. 96-0297.
20.
Vaidyanathan
,
R.
,
Senocak
,
I.
,
Wu
,
J.
, and
Shyy
,
W.
,
2003
, “
Sensitivity Evaluation of a Transport-Based Turbulent Cavitation Model
,”
ASME J. Fluids Eng.
,
125
(
9
), pp.
447
458
.
21.
Lyman
,
F.
,
1993
, “
On the Conservation of Rothalpy in Turbomachines
,”
ASME J. Turbomach.
,
115
(
3
), pp.
520
525
.
You do not currently have access to this content.