The compressible Rayleigh–Taylor (RT) instability is studied by performing a suite of large eddy simulations (LES) using the Miranda and Ares codes. A grid convergence study is carried out for each of these computational methods, and the convergence properties of integral mixing diagnostics and late-time spectra are established. A comparison between the methods is made using the data from the highest resolution simulations in order to validate the Ares hydro scheme. We find that the integral mixing measures, which capture the global properties of the RT instability, show good agreement between the two codes at this resolution. The late-time turbulent kinetic energy and mass fraction spectra roughly follow a Kolmogorov spectrum, and drop off as k approaches the Nyquist wave number of each simulation. The spectra from the highest resolution Miranda simulation follow a Kolmogorov spectrum for longer than the corresponding spectra from the Ares simulation, and have a more abrupt drop off at high wave numbers. The growth rate is determined to be between around 0.03 and 0.05 at late times; however, it has not fully converged by the end of the simulation. Finally, we study the transition from direct numerical simulation (DNS) to LES. The highest resolution simulations become LES at around t/τ ≃ 1.5. To have a fully resolved DNS through the end of our simulations, the grid spacing must be 3.6 (3.1) times finer than our highest resolution mesh when using Miranda (Ares).

References

References
1.
Rayleigh
,
L.
,
1883
, “
Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density
,”
Proc. R. Math. Soc.
,
14
(
1
), pp.
170
177
.
2.
Taylor
,
G.
,
1950
, “
The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes—I
,”
Proc. R. Soc. London Ser. A
,
201
(
1065
), pp.
192
196
.
3.
Chandrasekhar
,
S.
,
1955
, “
The Character of the Equilibrium of an Incompressible Heavy Viscous Fluid of Variable Density
,”
Math. Proc. Cambridge Philos. Soc.
,
51
(
1
), pp.
162
178
.
4.
Youngs
,
D. L.
,
1984
, “
Numerical Simulation of Turbulent Mixing by Rayleigh–Taylor Instability
,”
Phys. D
,
12
(
1–3
), pp.
32
44
.
5.
Youngs
,
D. L.
,
1989
, “
Modelling Turbulent Mixing by Rayleigh–Taylor Instability
,”
Physica D
,
37
(
1
), pp.
270
287
.
6.
Sharp
,
D. H.
,
1984
, “
An Overview of Rayleigh–Taylor Instability
,”
Physica D
,
12
(
1–3
), p.
3
.
7.
Haan
,
S. W.
,
1989
, “
Onset of Nonlinear Saturation for Rayleigh–Taylor Growth in the Presence of a Full Spectrum of Modes
,”
Phys. Rev. A
,
39
(
11
), pp.
5812
5825
.
8.
Haan
,
S. W.
,
1991
, “
Weakly Nonlinear Hydrodynamic Instabilities in Inertial Fusion
,”
Phys. Fluids B
,
3
(
8
), pp.
2349
2355
.
9.
Ofer
,
D.
,
Alon
,
U.
,
Shvarts
,
D.
,
McCrory
,
R. L.
, and
Verdon
,
C. P.
,
1996
, “
Modal Model for the Nonlinear Multimode Rayleigh–Taylor Instability
,”
Phys. Plasmas
,
3
(
8
), pp.
3073
3090
.
10.
Shvarts
,
D.
,
Alon
,
U.
,
Ofer
,
D.
,
McCrory
,
R. L.
, and
Verdon
,
C. P.
,
1995
, “
Nonlinear Evolution of Multimode Rayleigh–Taylor Instability in Two and Three Dimensions
,”
Phys. Plasmas
,
2
(
6
), pp.
2465
2472
.
11.
Kartoon
,
D.
,
Oron
,
D.
,
Arazi
,
L.
, and
Shvarts
,
D.
,
2003
, “
Three-Dimensional Multimode Rayleigh–Taylor and Richtmyer–Meshkov Instabilities at All Density Ratios
,”
Laser Part. Beams
,
21
(3), pp.
327
334
.
12.
Abarzhi
,
S. I.
,
2010
, “
On Fundamentals of Rayleigh–Taylor Turbulent Mixing
,”
Europhys. Lett.
,
91
(
3
), p.
35001
.
13.
Anisimov
,
S. I.
,
Drake
,
R. P.
,
Gauthier
,
S.
,
Meshkov
,
E. E.
, and
Abarzhi
,
S. I.
,
2013
, “
What is Certain and What is not so Certain in Our Knowledge of Rayleigh–Taylor Mixing?
,”
Philos. Trans. R. Soc. London Ser. A
,
371
(
2003
), p.
20130266
.
14.
Layzer
,
D.
,
1955
, “
On the Instability of Superposed Fluids in a Gravitational Field
,”
Astrophys. J.
,
122
, p.
1
.
15.
Hecht
,
J.
,
Alon
,
U.
, and
Shvarts
,
D.
,
1994
, “
Potential Flow Models of Rayleigh–Taylor and Richtmyer–Meshkov Bubble Fronts
,”
Phys. Fluids
,
6
(
12
), pp.
4019
4030
.
16.
Oron
,
D.
,
Arazi
,
L.
,
Kartoon
,
D.
,
Rikanati
,
A.
,
Alon
,
U.
, and
Shvarts
,
D.
,
2001
, “
Dimensionality Dependence of the Rayleigh–Taylor and Richtmyer–Meshkov Instability Late-Time Scaling Laws
,”
Phys. Plasmas
,
8
(
6
), pp.
2883
2889
.
17.
Goncharov
,
V. N.
,
2002
, “
Analytical Model of Nonlinear, Single-Mode, Classical Rayleigh–Taylor Instability at Arbitrary Atwood Numbers
,”
Phys. Rev. Lett.
,
88
(
13
), p.
134502
.
18.
Mikaelian
,
K. O.
,
2003
, “
Explicit Expressions for the Evolution of Single-Mode Rayleigh–Taylor and Richtmyer–Meshkov Instabilities at Arbitrary Atwood Numbers
,”
Phys. Rev. E
,
67
(
2
), p.
026319
.
19.
Srebro
,
Y.
,
Elbaz
,
Y.
,
Sadot
,
O.
,
Arazi
,
L.
, and
Shvarts
,
D.
,
2003
, “
A General Buoyancy-Drag Model for the Evolution of the Rayleigh–Taylor and Richtmyer–Meshkov Instabilities
,”
Laser Part. Beams
,
21
(3), pp.
347
353
.
20.
Jin
,
H.
,
Liu
,
X. F.
,
Lu
,
T.
,
Cheng
,
B.
,
Glimm
,
J.
, and
Sharp
,
D. H.
,
2005
, “
Rayleigh–Taylor Mixing Rates for Compressible Flow
,”
Phys. Fluids
,
17
(
2
), p.
024104
.
21.
George
,
E.
, and
Glimm
,
J.
,
2005
, “
Self-Similarity of Rayleigh–Taylor Mixing Rates
,”
Phys. Fluids
,
17
(
5
), p.
054101
.
22.
Lafay
,
M.-A.
,
LeCreurer
,
B.
, and
Gauthier
,
S.
,
2007
, “
Compressibility Effects on the Rayleigh–Taylor Instability Between Miscible Fluids
,”
Europhys. Lett.
,
79
(
6
), p.
64002
.
23.
Livescu
,
D.
, and
Ristorcelli
,
J. R.
,
2008
, “
Variable-Density Mixing in Buoyancy-Driven Turbulence
,”
J. Fluid Mech.
,
605
, pp.
145
180
.
24.
Livescu
,
D.
,
Ristorcelli
,
J. R.
,
Petersen
,
M. R.
, and
Gore
,
R. A.
,
2010
, “
New Phenomena in Variable-Density Rayleigh–Taylor Turbulence
,”
Phys. Scr. Vol. T
,
142
(
1
), p.
014015
.
25.
Gauthier
,
S.
,
2013
, “
Compressibility Effects in Rayleigh–Taylor Flows: Influence of the Stratification
,”
Phys. Scr. Vol. T
,
155
(
1
), p.
014012
.
26.
Reckinger
,
S. J.
,
Livescu
,
D.
, and
Vasilyev
,
O. V.
,
2016
, “
Comprehensive Numerical Methodology for Direct Numerical Simulations of Compressible Rayleigh–Taylor Instability
,”
J. Comput. Phys.
,
313
, pp.
181
208
.
27.
Mellado
,
J. P.
,
Sarkar
,
S.
, and
Zhou
,
Y.
,
2005
, “
Large-Eddy Simulation of Rayleigh–Taylor Turbulence With Compressible Miscible Fluids
,”
Phys. Fluids
,
17
(
7
), p.
076101
.
28.
Olson
,
B. J.
, and
Cook
,
A. W.
,
2007
, “
Rayleigh–Taylor Shock Waves
,”
Phys. Fluids
,
19
(
12
), p.
128108
.
29.
Cook
,
A. W.
,
Cabot
,
W.
, and
Miller
,
P. L.
,
2004
, “
The Mixing Transition in Rayleigh–Taylor Instability
,”
J. Fluid Mech.
,
511
, pp.
333
362
.
30.
Cabot
,
W. H.
, and
Cook
,
A. W.
,
2006
, “
Reynolds Number Effects on Rayleigh–Taylor Instability With Possible Implications for Type IA Supernovae
,”
Nat. Phys.
,
2
(
8
), pp.
562
568
.
31.
Olson
,
B. J.
,
Larsson
,
J.
,
Lele
,
S. K.
, and
Cook
,
A. W.
,
2011
, “
Nonlinear Effects in the Combined Rayleigh–Taylor/Kelvin–Helmholtz Instability
,”
Phys. Fluids
,
23
(
11
), p.
114107
.
32.
Cook
,
A. W.
,
2007
, “
Artificial Fluid Properties for Large-Eddy Simulation of Compressible Turbulent Mixing
,”
Phys. Fluids
,
19
(
5
), p.
055103
.
33.
Cook
,
A. W.
,
2009
, “
Enthalpy Diffusion in Multicomponent Flows
,”
Phys. Fluids
,
21
(
5
), p.
055109
.
34.
Mani
,
A.
,
Larsson
,
J.
, and
Moin
,
P.
,
2009
, “
Suitability of Artificial Bulk Viscosity for Large-Eddy Simulation of Turbulent Flows With Shocks
,”
J. Comput. Phys.
,
228
(
19
), pp.
7368
7374
.
35.
Johnsen
,
E.
,
Larsson
,
J.
,
Bhagatwala
,
A. V.
,
Cabot
,
W. H.
,
Moin
,
P.
,
Olson
,
B. J.
,
Rawat
,
P. S.
,
Shankar
,
S. K.
,
Sjögreen
,
B.
,
Yee
,
H. C.
,
Zhong
,
X.
, and
Lele
,
S. K.
,
2010
, “
Assessment of High-Resolution Methods for Numerical Simulations of Compressible Turbulence With Shock Waves
,”
J. Comput. Phys.
,
229
(
4
), pp.
1213
1237
.
36.
Olson
,
B. J.
, and
Lele
,
S. K.
,
2013
, “
Directional Artificial Fluid Properties for Compressible Large-Eddy Simulation
,”
J. Comput. Phys.
,
246
, pp.
207
220
.
37.
Darlington
,
R. M.
,
McAbee
,
T. L.
, and
Rodrigue
,
G.
,
2001
, “
A Study of ALE Simulations of Rayleigh–Taylor Instability
,”
Comput. Phys. Commun.
,
135
(
1
), pp.
58
73
.
38.
Wilkins
,
M.
,
1963
, “
Calculation of Elastic-Plastic Flow
,” Lawrence Radiation Laboratory,
Report No. UCRL-7322
.
39.
Kolev
,
T. V.
, and
Rieben
,
R. N.
,
2009
, “
A Tensor Artificial Viscosity Using a Finite Element Approach
,”
J. Comput. Phys.
,
228
(
22
), pp.
8336
8366
.
40.
Sharp
,
R.
, and
Barton
,
R.
,
1981
, “
Hemp Advection Model
,” Lawrence Livermore Laboratory, Livermore, CA,
Report No. UCID 17809
.
41.
Berger
,
M. J.
, and
Oliger
,
J.
,
1984
, “
Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations
,”
J. Comput. Phys.
,
53
(
3
), pp.
484
512
.
42.
Berger
,
M. J.
, and
Colella
,
P.
,
1989
, “
Local Adaptive Mesh Refinement for Shock Hydrodynamics
,”
J. Comput. Phys.
,
82
(
1
), pp.
64
84
.
43.
Dimonte
,
G.
,
2004
, “
Dependence of Turbulent Rayleigh–Taylor Instability on Initial Perturbations
,”
Phys. Rev. E
,
69
(
5
), p.
056305
.
44.
Cook
,
A. W.
, and
Dimotakis
,
P. E.
,
2001
., “
Transition Stages of Rayleigh–Taylor Instability Between Miscible Fluids
,”
J. Fluid Mech.
,
443
(
9
), pp.
69
99
.
45.
Ristorcelli
,
J. R.
, and
Clark
,
T. T.
,
2004
, “
Rayleigh–Taylor Turbulence: Self-Similar Analysis and Direct Numerical Simulations
,”
J. Fluid Mech.
,
507
(
5
), pp.
213
253
.
46.
Dimonte
,
G.
,
Youngs
,
D. L.
,
Dimits
,
A.
,
Weber
,
S.
,
Marinak
,
M.
,
Wunsch
,
S.
,
Garasi
,
C.
,
Robinson
,
A.
,
Andrews
,
M. J.
,
Ramaprabhu
,
P.
,
Calder
,
A. C.
,
Fryxell
,
B.
,
Biello
,
J.
,
Dursi
,
L.
,
MacNeice
,
P.
,
Olson
,
K.
,
Ricker
,
P.
,
Rosner
,
R.
,
Timmes
,
F.
,
Tufo
,
H.
,
Young
,
Y.-N.
, and
Zingale
,
M.
,
2004
, “
A Comparative Study of the Turbulent Rayleigh–Taylor Instability Using High-Resolution Three-Dimensional Numerical Simulations: The Alpha-Group Collaboration
,”
Phys. Fluids
,
16
(
5
), pp.
1668
1693
.
47.
Ramaprabhu
,
P.
,
Dimonte
,
G.
, and
Andrews
,
M. J.
,
2005
, “
A Numerical Study of the Influence of Initial Perturbations on the Turbulent Rayleigh–Taylor Instability
,”
J. Fluid Mech.
,
536
(
8
), pp.
285
319
.
48.
Olson
,
D. H.
, and
Jacobs
,
J. W.
,
2009
, “
Experimental Study of Rayleigh–Taylor Instability With a Complex Initial Perturbation
,”
Phys. Fluids
,
21
(
3
), p.
034103
.
49.
Thornber
,
B.
,
2016
, “
Impact of Domain Size and Statistical Errors in Simulations of Homogeneous Decaying Turbulence and the Richtmyer–Meshkov Instability
,”
Phys. Fluids
,
28
(
4
), p.
045106
.
50.
Youngs
,
D. L.
,
1991
, “
Three-Dimensional Numerical Simulation of Turbulent Mixing by Rayleigh–Taylor Instability
,”
Phys. Fluids A
,
3
(
5
), pp.
1312
1320
.
51.
Tritschler
,
V. K.
,
Olson
,
B. J.
,
Lele
,
S. K.
,
Hickel
,
S.
,
Hu
,
X. Y.
, and
Adams
,
N. A.
,
2014
, “
On the Richtmyer–Meshkov Instability Evolving From a Deterministic Multimode Planar Interface
,”
J. Fluid Mech.
,
755
, pp.
429
462
.
52.
Olson
,
B. J.
, and
Greenough
,
J. A.
,
2014
, “
Comparison of Two- and Three-Dimensional Simulations of Miscible Richtmyer–Meshkov Instability With Multimode Initial Conditions
,”
Phys. Fluids
,
26
(
10
), p.
101702
.
53.
Morgan
,
B. E.
, and
Greenough
,
J. A.
,
2015
, “
Large-Eddy and Unsteady RANS Simulations of a Shock-Accelerated Heavy Gas Cylinder
,”
Shock Waves
,
26
(
4
), pp.
355
383
.
54.
Dittrich
,
T. R.
,
Hurricane
,
O. A.
,
Callahan
,
D. A.
,
Dewald
,
E. L.
,
Döppner
,
T.
,
Hinkel
,
D. E.
,
Berzak Hopkins
,
L. F.
,
Le Pape
,
S.
,
Ma
,
T.
,
Milovich
,
J. L.
,
Moreno
,
J. C.
,
Patel
,
P. K.
,
Park
,
H.-S.
,
Remington
,
B. A.
,
Salmonson
,
J. D.
, and
Kline
,
J. L.
,
2014
, “
Design of a High-Foot High-Adiabat ICF Capsule for the National Ignition Facility
,”
Phys. Rev. Lett.
,
112
(
5
), p.
055002
.
55.
Ma
,
T.
,
Patel
,
P. K.
,
Izumi
,
N.
,
Springer
,
P. T.
,
Key
,
M. H.
,
Atherton
,
L. J.
,
Benedetti
,
L. R.
,
Bradley
,
D. K.
,
Callahan
,
D. A.
,
Celliers
,
P. M.
,
Cerjan
,
C. J.
,
Clark
,
D. S.
,
Dewald
,
E. L.
,
Dixit
,
S. N.
,
Döppner
,
T.
,
Edgell
,
D. H.
,
Epstein
,
R.
,
Glenn
,
S.
,
Grim
,
G.
,
Haan
,
S. W.
,
Hammel
,
B. A.
,
Hicks
,
D.
,
Hsing
,
W. W.
,
Jones
,
O. S.
,
Khan
,
S. F.
,
Kilkenny
,
J. D.
,
Kline
,
J. L.
,
Kyrala
,
G. A.
,
Landen
,
O. L.
,
Le Pape
,
S.
,
MacGowan
,
B. J.
,
Mackinnon
,
A. J.
,
MacPhee
,
A. G.
,
Meezan
,
N. B.
,
Moody
,
J. D.
,
Pak
,
A.
,
Parham
,
T.
,
Park
,
H.-S.
,
Ralph
,
J. E.
,
Regan
,
S. P.
,
Remington
,
B. A.
,
Robey
,
H. F.
,
Ross
,
J. S.
,
Spears
,
B. K.
,
Smalyuk
,
V.
,
Suter
,
L. J.
,
Tommasini
,
R.
,
Town
,
R. P.
,
Weber
,
S. V.
,
Lindl
,
J. D.
,
Edwards
,
M. J.
,
Glenzer
,
S. H.
, and
Moses
,
E. I.
,
2013
, “
Onset of Hydrodynamic Mix in High-Velocity, Highly Compressed Inertial Confinement Fusion Implosions
,”
Phys. Rev. Lett.
,
111
(
8
), p.
085004
.
56.
Olson
,
B. J.
, and
Greenough
,
J.
,
2014
, “
Large Eddy Simulation Requirements for the Richtmyer–Meshkov Instability
,”
Phys. Fluids
,
26
(
4
), p.
044103
.
You do not currently have access to this content.