This paper considers the inherent unsteady behavior of the three-dimensional (3D) separation in the corner region of a subsonic linear compressor cascade equipped of 13 NACA 65-009 profile blades. Detailed experimental measurements were carried out at different sections in spanwise direction achieving, simultaneously, unsteady wall pressure signals on the surface of the blade and velocity fields by time-resolved particle image velocimetry (PIV) measurements. Two configurations of the cascade were investigated with an incidence of 4 deg and 7 deg, both at Re=3.8×105 and Ma = 0.12 at the inlet of the facility. The intermittent switch between two statistical preferred sizes of separation, large, and almost suppressed, is called bimodal behavior. The present PIV measurements provide, for the first time, time-resolved flow visualizations of the separation switch with an extended field of view covering the entire blade section. Random large structures of the incoming boundary layer are found to destabilize the separation boundary. The recirculation region, therefore, enlarges when these high vorticity perturbations blend with larger eddies situated in the aft part of the blade. Such a massive detached region persists until its main constituting vortex suddenly breaks down and the separation almost completely vanishes. The increase of the blockage during the separation growth phase appears to be responsible for this mechanism. Consequently, the proper orthogonal decomposition (POD) analysis is carried out to decompose the flow modes and to contribute to clarify the underlying cause-effect relations, which predominate the dynamics of the present flow scenario.

References

1.
Schulz
,
H.
,
Gallus
,
H.
, and
Lakshminarayana
,
B.
,
1990
, “
Three-Dimensional Separated Flow Field in the Endwall Region of an Annular Compressor Cascade in the Presence of Rotor-Stator Interaction
,”
ASME J. Turbomach.
,
112
(
4
), pp.
669
688
.
2.
Dong
,
Y.
,
Gallimore
,
S. J.
, and
Hodson
,
H. P.
,
1987
, “
Three-Dimensional Flows and Loss Reduction in Axial Compressors
,”
ASME J. Turbomach.
,
109
(
3
), pp.
354
361
.
3.
Nerger
,
D.
,
Saathoff
,
H.
,
Radespiel
,
R.
,
Gümmer
,
V.
, and
Clemen
,
C.
,
2012
, “
Experimental Investigation of Endwall and Suction Side Blowing in a Highly Loaded Compressor Stator Cascade
,”
ASME J. Turbomach.
,
134
(
2
), p.
021010
.
4.
Siemann
,
J.
, and
Seume
,
J. R.
,
2015
, “
Design of an Aspirated Compressor Stator by Means of DOE
,”
ASME
Paper No. GT2015-42474.
5.
Gallimore
,
S. J.
,
Bolger
,
J. J.
,
Cumpsty
,
N. A.
,
Taylor
,
M. J.
,
Wright
,
P. I.
, and
Place
,
J. M. M.
,
2002
, “
The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading—Part I: University Research and Methods Development
,”
ASME J. Turbomach.
,
124
(
4
), pp.
521
532
.
6.
Dorfner
,
C.
,
Hergt
,
A.
,
Nicke
,
E.
, and
Moenig
,
R.
,
2011
, “
Advanced Nonaxisymmetric Endwall Contouring for Axial Compressors by Generating an Aerodynamic Separator—Part I: Principal Cascade Design and Compressor Application
,”
ASME J. Turbomach.
,
133
(
2
), p.
021026
.
7.
Dodds
,
J.
, and
Vahdati
,
M.
,
2015
, “
Rotating Stall Observations in a High Speed Compressor-Part II: Numerical Study
,”
ASME J. Turbomach.
,
137
(
5
), p.
051003
.
8.
Yamada
,
K.
,
Furukawa
,
M.
,
Nakakido
,
S.
,
Matsuoka
,
A.
, and
Nakayama
,
K.
,
2015
, “
Large-Scale DES Analysis of Unsteady Flow Field in a Multi-Stage Axial Flow Compressor at Off-Design Condition Using K Computer
,”
ASME
Paper No. GT2015-42648.
9.
Beselt
,
C.
,
Pardowitz
,
B.
,
van Rennings
,
R.
,
Sorge
,
R.
,
Peitsch
,
D.
,
Enghardt
,
L.
,
Thiele
,
F.
,
Ehrenfried
,
K.
, and
Thamsen
,
P. U.
,
2013
, “
Influence of the Clearance Size on Rotating Instability in an Axial Compressor Stator
,”
10th European Turbomachinery Conference
, Lappeenranta, Finland, Apr. 15–19, pp.
15
19
.
10.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2005
, “
Three-Dimensional Separations in Axial Compressors
,”
ASME J. Turbomach.
,
127
(
2
), pp.
331
339
.
11.
Lei
,
V.
,
Spakovszky
,
Z.
, and
Greitzer
,
E.
,
2008
, “
A Criterion for Axial Compressor Hub-Corner Stall
,”
ASME J. Turbomach.
,
130
(
3
), p.
31006
.
12.
Taylor
,
J. V.
, and
Miller
,
R. J.
,
2015
, “
Competing 3D Mechanisms in Compressor Flows
,”
ASME
Paper No. GT2015-43322.
13.
Ma
,
W.
,
Ottavy
,
X.
,
Lu
,
L.
, and
Leboeuf
,
F.
,
2013
, “
Intermittent Corner Separation in a Linear Compressor Cascade
,”
Exp. Fluids
,
54
(
6
), p. 1546.
14.
Ma
,
W.
,
2012
, “
Experimental Investigation of Corner Stall in a Linear Compressor Cascade
,” Ph.D. thesis, École Centrale de Lyon, Écully, France.
15.
Gao
,
F.
,
Zambonini
,
G.
,
Boudet
,
J.
,
Ottavy
,
X.
,
Lu
,
L.
, and
Shao
,
L.
,
2015
, “
Unsteady Behavior of Corner Separation in a Compressor Cascade: Large Eddy Simulation and Experimental Study
,”
J. Power Energy
,
229
(
5
), pp.
508
519
.
16.
Abbott
,
I. H.
,
Von Doenhoff
,
A. E.
, and
Stivers
,
L.
, Jr.
,
1945
,
Summary of Airfoil Data
, NACA, Langley AFB, VA, NACA
Report No. 824
.
17.
Zambonini
,
G.
, and
Ottavy
,
X.
,
2015
, “
Unsteady Pressure Investigations of Corner Separated Flow in a Linear Compressor Cascade
,”
ASME
Paper No. GT2015-42073.
18.
Gao
,
F.
,
Ma
,
W.
,
Zambonini
,
G.
,
Boudet
,
J.
,
Ottavy
,
X.
,
Lu
,
L.
, and
Shao
,
L.
,
2015
, “
Large-Eddy Simulation of 3-D Corner Separation in a Linear Compressor Cascade
,”
Phys. Fluids
,
27
(
8
), p.
085105
.
19.
Lieblein
,
S.
,
1959
, “
Loss and Stall Analysis of Compressor Cascades
,”
ASME J. Basic Eng.
,
81
(
3
), pp.
387
400
.
20.
Evans
,
B. J.
,
1971
, “
Effects of Free-Stream Turbulence on Blade Performance in a Compressor Cascade
,” Ph.D. thesis, University of Cambridge, Cambridge, UK.
21.
Godard
,
A.
,
2010
, “
Etude Numérique et Expérimentale d’un Compresseur Aspiré
,” Ph.D. thesis, École Centrale de Lyon, Écully, France.
22.
Stanislas
,
M.
,
Okamoto
,
K.
,
Kähler
,
C. J.
,
Westerweel
,
J.
, and
Scarano
,
F.
,
2008
, “
Main Results of the Third International PIV Challenge
,”
Exp. Fluids
,
45
(
1
), pp.
27
71
.
23.
Smith
,
C. R.
, and
Kline
,
S. J.
,
1974
, “
An Experimental Investigation of the Transitory Stall Regime in Two-Dimensional Diffusers
,”
ASME J. Fluids Eng.
,
96
(
1
), pp.
11
15
.
24.
Reneau
,
L. R.
,
Johnston
,
J.
, and
Kline
,
S. J.
,
1967
, “
Performance and Design of Straight, Two-Dimensional Diffusers
,”
ASME J. Basic Eng.
,
89
(
1
), pp.
141
150
.
25.
Bardina
,
J.
,
Lyrio
,
A.
,
Kline
,
S.
,
Ferziger
,
J.
, and
Johnston
,
J.
,
1981
, “
A Prediction Method for Planar Diffuser Flows
,”
ASME J. Fluids Eng.
,
103
(
2
), pp.
315
321
.
26.
Kwong
,
A.
, and
Dowling
,
A.
,
1994
, “
Unsteady Flow in Diffusers
,”
ASME J. Fluids Eng.
,
116
(
4
), pp.
842
847
.
27.
Ashjaee
,
J.
, and
Johnston
,
J.
,
1980
, “
Straight-Walled, Two-Dimensional Diffusers-Transitory Stall and Peak Pressure Recovery
,”
ASME J. Fluids Eng.
,
102
(
3
), pp.
275
282
.
28.
Kriegseis
,
J.
,
Dehler
,
T.
,
Gnirß
,
M.
, and
Tropea
,
C.
,
2010
, “
Common-Base Proper Orthogonal Decomposition as a Means of Quantitative Data Comparison
,”
Meas. Sci. Technol.
,
21
(
8
), p.
085403
.
29.
Fernando
,
J. N.
,
Kriegseis
,
J.
, and
Rival
,
D. E.
,
2014
, “
Modal Analysis of Confined Square and Rectangular Cavity Flows
,”
Int. J. Heat Fluid Flow
,
47
, pp.
123
134
.
You do not currently have access to this content.