Laboratory experiments were conducted to study the dynamics of sand jets passing through two immiscible fluids. Different oil layer thicknesses, nozzle diameters, and sand masses were employed. Evolution of oily sand jets with time was investigated using image processing and boundary visualization techniques. Different shapes of the frontal head and trailing wave section were observed and cloud formation was classified into different categories based on Reynolds number, normalized oil layer thickness, and evolution time. It was found that the effect of Reynolds number on evolution of oily sand jets was more significant than the other parameters. Width and frontal velocity of oily sand jets were measured at different times. It was observed that oily sand jets became unstable after a distance of ten times larger than the nozzle diameter. Instability of oily sand jets caused intense spreading with a spreading rate of 0.4. The thin layer of oil encapsulated sand cluster was ruptured due to excess shear stress and caused bursting of the frontal head into a cloud of sand particles. Three different bursting mechanisms were observed and a correlation was found between the densimetric Froude number and the normalized bursting time. Data mining and boundary visualization techniques were used to model oily sand jets. Model trees were developed to classify and predict the growth of oily sand jets at different conditions. Modeling results indicated that the Model tree can predict the growth of sand jets with an uncertainty of ±8.2%, ±6.8%, and ±8.7% for width, velocity, and distance, respectively.

References

References
1.
Pignatel
,
F.
,
Nicolas
,
M.
, and
Guazzelli
,
E.
,
2011
, “
A Falling Cloud of Particles at a Small but Finite Reynolds Number
,”
J. Fluid Mech.
,
671
, pp.
34
51
.
2.
Hall
,
N.
,
Elenany
,
M.
,
Zhu
,
D. Z.
, and
Rajaratnam
,
N.
,
2010
, “
Experimental Study of Sand and Slurry Jets in Water
,”
J. Hydraul. Eng.
,
136
(
10
), pp.
727
738
.
3.
Noh
,
Y.
, and
Fernando
,
H. J. S.
,
1993
, “
The Transition in the Sedimentation Pattern of a Particle Cloud
,”
Phys. Fluids A
,
5
(
12
), pp.
3049
3055
.
4.
Noh
,
Y.
,
2000
, “
Sedimentation of a Particle Cloud Across a Density Interface
,”
Fluid Dyn. Res.
,
27
(
3
), pp.
129
142
.
5.
Rahimipour
,
H.
, and
Wilkinson
,
D.
,
1992
, “
Dynamic Behavior of Particle Clouds
,”
Eleventh Australasian Fluid Mechanics Conference
, University of Tasmania, Hobart, Australia, pp.
743
746
.
6.
Bush
,
J. W. M.
,
Thurber
,
B. A.
, and
Blanchette
,
F.
,
2003
, “
Particle Clouds in Homogeneous and Stratified Environments
,”
J. Fluid Mech.
,
489
, pp.
29
54
.
7.
Azimi
,
A.
,
Zhu
,
D. Z.
, and
Rajaratnam
,
N.
,
2012
, “
Experimental Study of Sand Jet Front in Water
,”
Int. J. Multiphase Flow
,
40
, pp.
19
37
.
8.
Azimi
,
A.
,
Zhu
,
D. Z.
, and
Rajaratnam
,
N.
,
2012
, “
Computational Investigation on Vertical Slurry Jets
,”
Int. J. Multiphase Flow
,
47
, pp.
94
114
.
9.
Azimi
,
A. H.
,
Zhu
,
D. Z.
, and
Rajaratnam
,
N.
,
2014
, “
Experimental Study of Subaqueous Sand Deposition From Slurry Wall Jets
,”
ASCE J. Eng. Mech.
,
140
(
2
), pp.
296
314
.
10.
Azimi
,
A. H.
,
Zhu
,
D. Z.
, and
Rajaratnam
,
N.
,
2015
, “
An Experimental Study of Circular Sand–Water Wall Jets
,”
Int. J. Multiphase Flow
,
74
, pp.
34
44
.
11.
Giraut
,
F.
,
Carazzo
,
G.
,
Tait
,
S.
,
Ferrucci
,
F.
, and
Kaminski
,
E.
,
2014
, “
The Effect of Total Grain-Size Distribution on the Dynamics of Turbulent Volcanic Plumes
,”
Earth Planet. Sci. Lett.
,
394
, pp.
124
134
.
12.
Miller
,
W. G.
,
Scott
,
J. D.
, and
Sego
,
D. C.
,
2009
, “
Flume Deposition Modeling of Caustic and Noncaustic Oil Sand Tailings
,”
Can. Geotech. J.
,
46
(
6
), pp.
679
693
.
13.
Friedman
,
P. D.
, and
Katz
,
J.
,
1999
, “
The Flow and Mixing Mechanisms Caused by the Impingement of an Immiscible Interface With a Vertical Jet
,”
Phys. Fluids
,
11
(
9
), pp.
2598
2606
.
14.
Geyer
,
A.
,
Phillips
,
J. C.
,
Mier-Torrecilla
,
M.
,
Idelsohn
,
S. R.
, and
Onate
,
E.
,
2011
, “
Flow Behaviour of Negatively Buoyant Jets in Immiscible Ambient Fluid
,”
Exp. Fluids.
,
52
(
1
), pp.
261
271
.
15.
Brush
,
L. M. J.
,
1962
, “
Exploratory Study of Sediment Diffusion
,”
J. Geophys. Res.
,
67
(
4
), pp.
1427
1433
.
16.
Mazurek
,
K. A.
,
Christison
,
K.
, and
Rajaratnam
,
N.
,
2002
, “
Turbulent Sand Jet in Water
,”
J. Hydraulic. Res.
,
40
(
4
), pp.
527
530
.
17.
Singamsetti
,
S. R.
,
1966
, “
Diffusion of Sediment in Submerged Jet
,”
ASCE, J. Hydraul. Div.
,
92
(
2
), pp.
153
168
.
18.
Nicolas
,
M.
,
2002
, “
Experimental Study of Gravity-Driven Dense Suspension Jets
,”
Phys. Fluids
,
14
(
10
), pp.
3570
3576
.
19.
Subramanian
,
G.
, and
Koch
,
D. L.
,
2008
, “
Evolution of Clusters of Sedimenting Low-Reynolds-Number Particles With Oseen Interactions
,”
J. Fluid Mech.
,
603
, pp.
63
100
.
20.
Lai
,
A. C. H.
,
Wang
,
R.
,
Law
,
A. W. K.
, and
Adams
,
E. E.
,
2016
, “
Modeling and Experiments of Polydisperse Particle Clouds
,”
Environ. Fluid Mech.
,
16
(
4
), pp.
875
898
.
21.
Moghadaripour
,
M.
,
2016
, “
Experimental Study of Sand Jets and Particle Clouds in Water
,” M.Sc. thesis, Lakehead University, Thunder Bay, ON, Canada, p.
116
.
22.
Moghadaripour
,
M.
,
Azimi
,
A. H.
, and
Elyasi
,
S.
,
2016
, “
Experimental Study of Oblique Particle Clouds in Water
,”
Int. J. Multiphase Flow
, pp.
193
213
.
23.
Zhao
,
B.
,
Law
,
A. W. K.
,
Adams
,
E. E.
, and
Er
,
J. W.
,
2014
, “
Formation of Particle Clouds
,”
J. Fluid Mech.
,
746
, pp.
193
213
.
24.
Bond
,
D.
, and
Johari
,
H.
,
2005
, “
Effect of Initial Geometry on the Development of Thermals
,”
Exp. Fluids
,
39
(3), pp.
591
601
.
25.
Webster
,
D. R.
, and
Longmire
,
E. K.
,
2001
, “
Jet Pinch-Off and Drop Formation in Immiscible Liquid–Liquid Systems
,”
Exp. Fluids
,
30
(
1
), pp.
47
56
.
26.
Rao
,
K. K.
, and
Nott
,
P. R.
,
2008
,
An Introduction to Granular Flow
,
Cambridge University Press
,
Cambridge, UK
, p.
512
.
27.
Cai
,
J.
,
Hall
,
N.
,
Elenany
,
M.
,
Zhu
,
D. Z.
, and
Rajaratnam
,
N.
,
2010
, “
Observations on Sand Jets in Air
,”
ASCE J. Eng. Mech.
,
136
(
9
), pp.
1181
1186
.
28.
Zhao
,
B.
,
Law
,
A. W. K.
,
Adams
,
E. E.
,
Shao
,
D.
, and
Huang
,
Z.
,
2012
, “
Effect of Air Release Height on the Formation of Sediment Thermals in Water
,”
J. Hydraul. Res.
,
50
(
2
), pp.
532
540
.
29.
Lai
,
A. C. H.
,
Chan
,
S. N.
,
Law
,
A. W. K.
, and
Adams
,
E. E.
,
2016
, “
Spreading Hypothesis of a Particle Plume
,”
ASCE J. Hydraul. Eng.
,
142
(12), p.
04016065
.
30.
Witten
,
I. H.
, and
Frank
,
E.
,
2005
,
Data Mining-Practical Machine Learning Tools and Techniques
, Morgan Kaufmann, San Francisco, CA, p.
525
.
31.
Bhattacharya
,
B.
,
Price
,
R. K.
, and
Solomatine
,
D. P.
,
2007
, “
Machine Learning Approach to Modeling Sediment Transport
,”
ASCE J. Hydraul. Eng.
,
133
(
4
), pp.
440
450
.
32.
Jung
,
N. C.
,
Popescu
,
I.
,
Keldeman
,
P.
,
Solomatine
,
D. P.
, and
Price
,
R. K.
,
2010
, “
Application of Model Trees and Other Machine Learning Techniques for Algal Growth Prediction in Yongdam Reservoir, Republic of Korea
,”
J. Hydroinf.
,
12
(
3
), pp.
262
274
.
33.
Quinlan
,
J. R.
,
1992
, “
Learning With Continuous Classes
,”
5th Australian Joint Conference on Artificial Intelligence
, World Scientific, Singapore, pp.
343
348
.
34.
Etemad-Shahidi
,
A.
, and
Taghipour
,
M.
,
2012
, “
Predicting Longitudinal Dispersion Coefficient in Natural Streams Using M5 Model Tree
,”
ASCE J. Hydrau. Eng.
,
138
(
6
), pp.
542
554
.
35.
Wang
,
Y.
, and
Witten
,
I. H.
,
1997
, “
Induction of Model Trees for Predicting Continues Classes
,” European
Conference on Machine Learning, University of Economics, Faculty of Informatics and Statistics
, Prague, Czech Republic, pp.
128
137
.
36.
Pedrycz
,
W.
, and
Sosnowski
,
Z. A.
,
2001
, “
The Design of Decision Trees in the Frame Work of Granular Data and Their Application to Software Quality Models
,”
Fuzzy Sets Syst.
123
(
3
), pp.
271
290
.
37.
Turner
,
J. S.
,
1969
, “
Buoyant Plumes and Thermals
,”
Annu. Rev. Fluid Mech.
,
1
(
1
), pp.
29
44
.
38.
Lee
,
J. H. W.
, and
Chu
,
V. H.
,
2003
,
Turbulent Jets and Plums, A Lagrangian Approach
,
Kluwer Academic Publishers Group
,
Dordrecht, The Netherlands
, p.
390
.
You do not currently have access to this content.