This paper investigates the self-similarity properties in the far downstream of high Reynolds number turbulent wake flows. The growth rate of the wake layer width, dδ/dx; the decaying rate of the maximum velocity defect, dUs/dx; and the scaling for the maximum mean transverse (across the stream) velocity, Vmax, are derived directly from the self-similarity of the continuity equation and the mean momentum equation. The analytical predictions are validated with the experimental data. Using an approximation function for the mean axial flow, the self-similarity analysis yields approximate solutions for the mean transverse velocity, V, and the Reynolds shear stress, T=uv. Close relations among the shapes of U, V, and T are revealed.

References

References
1.
Townsend
,
A. A.
,
1980
,
The Structure of Turbulent Shear Flow
,
Cambridge University Press
,
Cambridge, UK
.
2.
Wygnanski
,
I.
,
Champagne
,
F.
, and
Marasli
,
B.
,
1986
, “
On the Large-Scale Structures in Two-Dimensional, Small-Deficit, Turbulent Wakes
,”
J. Fluid Mech.
,
168
, pp.
31
71
.
3.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
4.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
,
3rd ed.
,
DCW Industries
,
La Canada, CA
.
5.
George
,
W. K.
,
1989
, “
The Self-Preservation of Turbulent Flows and Its Relation to Initial Conditions and Coherent Structures
,”
Adv. Turbul.
, pp.
39
73
.
6.
Antonia
,
R.
, and
Mi
,
J.
,
1998
, “
Approach Towards Self-Preservation of Turbulent Cylinder and Screen Wakes
,”
Exp. Therm. Fluid Sci.
,
17
(
4
), pp.
277
284
.
7.
George
,
W. K.
,
2012
, “
Asymptotic Effect of Initial and Upstream Conditions on Turbulence
,”
ASME J. Fluids Eng.
,
134
(
6
), p.
061203
.
8.
Schlichting
,
H.
, and
Gersten
,
K.
,
2000
,
Boundary-Layer Theory
,
Springer-Verlag
,
Berlin
.
9.
Sreenivasan
,
K.
,
1981
, “
Approach to Self-Preservation in Plane Turbulent Wakes
,”
AIAA J.
,
19
(
10
), pp.
1365
1367
.
10.
Sreenivasan
,
K. R.
, and
Narasimha
,
R.
,
1982
, “
Equilibrium Parameters for Two-Dimensional Turbulent Wakes
,”
ASME J. Fluids Eng.
,
104
(
2
), pp.
167
169
.
11.
Ong
,
L.
, and
Wallace
,
J.
,
1996
, “
The Velocity Field of the Turbulent Very Near Wake of a Circular Cylinder
,”
Exp. Fluids
,
20
(
6
), pp.
441
453
.
12.
Ma
,
X.
,
Karamanos
,
G.-S.
, and
Karniadakis
,
G.
,
2000
, “
Dynamics and Low-Dimensionality of a Turbulent Near Wake
,”
J. Fluid Mech.
,
410
, pp.
29
65
.
13.
Konstantinidis
,
E.
,
Balabani
,
S.
, and
Yianneskis
,
M.
,
2005
, “
Conditional Averaging of PIV Plane Wake Data Using a Cross-Correlation Approach
,”
Exp. Fluids
,
39
(
1
), pp.
38
47
.
14.
Yang
,
J.
,
Liu
,
M.
,
Wu
,
G.
,
Zhong
,
W.
, and
Zhang
,
X.
,
2014
, “
Numerical Study on Coherent Structure Behind a Circular Disk
,”
J. Fluids Struct.
,
51
, pp.
172
188
.
15.
Gough
,
T.
, and
Hancock
,
P.
,
1996
, “
Low Reynolds Number Turbulent Near Wakes
,”
Advances in Turbulence VI
,
Springer
,
The Netherlands
, pp.
445
448
.
16.
Hickey
,
J.-P.
,
2012
, “
Direct Simulation and Theoretical Study of Sub-and Supersonic Wakes
,”
Ph.D. thesis
, Royal Military College of Canada,
Ontario, Canada
.
17.
Liu
,
X.
,
2001
, “
A Study of Wake Development and Structure in Constant Pressure Gradients
,”
Ph.D. thesis
, University of Notre Dame,
Notre Dame, IN
.
You do not currently have access to this content.