The flow field in a linear cascade of highly loaded turbine nozzle guide vanes (NGVs) has been numerically investigated at low and high-subsonic regime, i.e., exit isentropic Mach number of M2is = 0.2 and 0.6, respectively. Extensive experimental data are available for an accurate assessment of the numerical procedure. Aerodynamic measurements include not only vane loading and pressure drop in the wake but also local flow features such as boundary layer behavior along both pressure and suction sides of the vane, as well as secondary flow structures downstream of the trailing edge (TE). Simulations were performed by using two computational fluid dynamics (CFD) codes, a commercial one and an open-source based in-house code. Besides computations with the well-established shear-stress transport (SST) k–ω turbulence model assuming fully turbulent flow, transition models were taken into account in the present study. The original version of the γ–Reθ model of Menter was employed. Suluksna–Juntasaro correlations for transition length (Flenght) and transition onset (Fonset) were also tested. The main goal was to establish essential ingredients for reasonable computational predictions of the cascade aerodynamic behavior, under both incompressible and compressible regime. This study showed that transition modeling should be coupled with accurate profiles of inlet velocity and turbulence intensity to get a chance to properly quantify aerodynamic losses via CFD method. However, additional weaknesses of the transition modeling have been put forward when increasing the outlet Mach number.

References

References
1.
Horloc
,
J. H.
, and
Denton
,
J. D.
,
2005
, “
A Review of Some Early Design Practice Using Computational Fluid Dynamics and a Current Perspective
,”
ASME J. Turbomach.
,
127
(
1
), pp.
5
13
.
2.
De Palma
,
P.
,
2006
, “
Numerical Simulations of Three-Dimensional Transitional Compressible Flows in Turbomachinery Cascade
,”
Int. J. Numer. Methods Heat Fluid Flow
,
16
(
4
), pp.
509
529
.
3.
Bhaskaran
,
R.
, and
Lele
,
S. K.
,
2011
, “
Heat Transfer Prediction in High Pressure Turbine Cascade With Free-Stream Turbulence Using LES
,”
AIAA
Paper No. 2011-3266.
4.
Papadogiannis
,
D.
,
Duchaine
,
F.
,
Sicot
,
F.
,
Gicquel
,
L.
,
Wang
,
G.
, and
Moreau
,
S.
,
2014
, “
Large Eddy Simulation of a High Pressure Turbine Stage: Effects of Sub-Grid Scale Modeling and Mesh Resolution
,”
ASME
Paper No. GT2014-25876.
5.
Elsner
,
W.
,
2007
, “
Transition Modelling in Turbomachinery
,”
J. Theor. Appl. Mech.
,
45
(
3
), pp.
539
556
.
6.
Michelassi
,
V.
,
Wissink
,
J. G.
,
Frohlich
,
J.
, and
Rodi
,
W.
,
2003
, “
Large Eddy Simulation of a Flow Around a Turbine Blade With Incoming Wakes
,”
AIAA J.
,
41
(
11
), pp.
2143
2156
.
7.
Wheeler
,
A. P. S.
,
Sandberg
,
R. D.
,
Sandham
,
N. D.
,
Pichler
,
R.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2016
, “
Direct Numerical Simulations of a High-Pressure Turbine Vane
,”
ASME J. Turbomach.
,
138
(
7
), p.
071003
.
8.
Menter
,
F. R.
, and
Langtry
,
R. B.
,
2012
, “
Transition Modelling for Turbomachinery Flows
,”
Low Reynolds Number Aerodynamics and Transition
,
InTech
, Rijeka, Croatia.
9.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Volker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables—Part I: Model formulation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
.
10.
Langtry
,
R. B.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables for Unstructured Parallelized CFD Codes
,” Ph.D. thesis, University of Stuttgart, Stuttgart, Germany.
11.
Langtry
,
R. B.
,
Menter
,
F. R.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Volker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables—Part II: Test Cases and Industrial Applications
,”
ASME J. Turbomach.
,
128
(
3
), pp.
423
434
.
12.
Turgut
,
O. H.
, and
Camci
,
C.
,
2011
, “
A Computational Validation of Turbine Nozzle Guide Vane Aerodynamic Experiments in an HP Turbine Stage
,”
ASME
Paper No. IMECE2011-64352
13.
Turgut
,
O. H.
, and
Camci
,
C.
,
2016
, “
Factors Influencing Computational Predictability of Aerodynamic Losses in a Turbine Nozzle Guide Vane Flow
,”
ASME J. Fluids Eng.
,
138
(
5
), p.
051103
.
14.
Petersen
,
A.
,
2014
, “
Numerical Transition Prediction in a Straight Turbine Cascade
,”
WCCM XI—ECCM V—ECFD VI
(Sixth European Conference on Computational Fluid Dynamics)
, Barcelona, Spain, July 20–25.
15.
Marconcini
,
M.
,
Pacciani
,
R.
, and
Arnone
,
A.
,
2015
, “
Transition Modelling Implications in the CFD Analysis of a Turbine Nozzle Vane Cascade Tested Over a Range of Mach and Reynolds Numbers
,”
J. Therm. Sci.
,
24
(
6
), pp.
526
534
.
16.
Nix
,
A. C.
,
Smith
,
A. C.
,
Diller
,
T. E.
,
Ng
,
W. F.
, and
Thole
,
K. A.
,
2002
, “
High Intensity, Large Length-Scale Freestream Turbulence Generation in a Transonic Turbine Cascade
,”
ASME
Paper No. GT-2002-30523.
17.
Malan
,
P.
,
Suluksna
,
K.
, and
Juntasaro
,
E.
,
2009
, “
Calibrating the γ-Reθ Transition Model for Commercial CFD
,”
AIAA
Paper No. 2009-1142.
18.
Barigozzi
,
G.
, and
Ravelli
,
S.
,
2011
, “
The Effect of Turbulence Models on CFD Predictions of the Flowfield in a Turbine Nozzle Vane Cascade
,”
Tenth International Symposium on Experimental Computational Aerothermodynamics of Internal Flows
, Brussels, Belgium, Paper No. ISAIF10-104.
19.
CD-adapco, 2014, “
STAR CCM+ User Guide Version 10.04
,” Siemens, Munich, Germany.
20.
Suluksna
,
K.
,
Dechaumphai
,
P.
, and
Juntasaro
,
E.
,
2009
, “
Correlations for Modeling Transitional Boundary Layers Under Influences of Freestream Turbulence and Pressure Gradient
,”
Int. J. Heat Fluid Flow
,
30
(
1
), pp.
66
75
.
21.
Marusic
,
I.
, and
Kunkel
,
G. J.
,
2003
, “
Streamwise Turbulence Intensity Formulation for Flat-Plate Boundary Layers
,”
Phys. Fluids
,
15
(
8
), pp.
2461
2464
.
22.
OpenCFD
,
2005
, “
OpenFoam Programmer Guide
,”
OpenCFD Limited
, ESI Group, Paris, France.
23.
OpenCFD
,
2005
, “
OpenFoam User Guide
,”
OpenCFD Limited
, ESI Group, Paris, France.
24.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
,
1985
, “
An Evaluation of the Segregated Approach for Predicting Incompressible Fluid Flows
,”
ASME
Paper No. 85-HT-9.
25.
Hanimann
,
L.
,
Mangani
,
L.
,
Casartelli
,
E.
,
Mokulys
,
T.
, and
Mauri
,
S.
,
2014
, “
Development of a Novel Mixing Plane Interface Using a Fully Implicit Averaging for Stage Analysis
,”
ASME. J. Turbomach.
,
136
(
8
), p.
081010
.
26.
Mangani
,
L.
,
2008
, “
Development and Validation of an Object Oriented CFD Solver for Heat Transfer and Combustion Modeling in Turbomachinery Application
,” Ph.D. thesis, Dipartimento di Energetica, Universita` degli Studi di Firenze, Florence, Italy.
27.
Mangani
,
L.
,
Facchini
,
B.
, and
Bianchini
,
C.
,
2009
, “
Conjugate Heat Transfer Analysis of an Internally Cooled Turbine Blades With an Object Oriented CFD Code
,”
European Turbomachinery Conference ETC09
, Istanbul, Turkey, pp. 627–637.
28.
Mangani
,
L.
, and
Maritano
,
M.
,
2010
, “
Conjugate Heat Transfer Analysis of NASA C3X Film Cooled Vane With an Object-Oriented CFD Code
,”
ASME
Paper No. GT2010-23458.
29.
Mangani
,
L.
,
Bianchini
,
C.
,
Andreini
,
A.
, and
Facchini
,
B.
,
2007
, “
Development and Validation of a C++ Object Oriented CFD Code for Heat Transfer Analysis
,”
Thermal Engineering and Summer Heat Transfer Conference
, pp.
1
16
, Paper No. AJ-1266.
30.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2005
, “
Transition Modeling for General CFD Applications in Aeronautics
,”
AIAA
Paper No. 2005-522.
31.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.
32.
Langtry
,
R. B.
,
Sengupta
,
K.
,
Yeh
,
D. T.
, and
Dorgan
,
A. J.
,
2015
, “
Extending the Gamma-Rethetat Correlation Based Transition Model for Crossflow Effects
,”
AIAA
Paper No. 2015-2474.
33.
Spalart
,
P. R.
, and
Rumsey
,
C. L.
,
2007
, “
Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculations
,”
AIAA J.
,
45
(
10
), pp.
2544
2553
.
34.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
509
536
.
35.
Kost
,
F. H.
, and
Holmes
,
A. T.
,
1985
, “
Aerodynamic Effect of Coolant Ejection in the Rear Part of Transonic Rotor Blades
,” Heat Transfer and Cooling in Gas Turbines, Bergen, Norway, Paper No. AGARD CP 390.
36.
Perdichizzi
,
A.
, and
Dossena
,
V.
,
1993
, “
Incidence Angle and Pitch-Chord Effects on Secondary Flows Downstream of a Turbine Cascade
,”
ASME J. Turbomach.
,
115
(
3
), pp.
383
391
.
37.
Perdichizzi
,
A.
,
1990
, “
Mach Number Effects on Secondary Flow Development Downstream of a Turbine Cascade
,”
ASME J. Turbomach.
,
112
(
4
), pp.
643
651
.
38.
Sieverding
,
C. H.
, and
Wilputte
,
Ph.
,
1981
, “
Influence of Mach Number and End Wall Cooling on Secondary Flows in a Straight Nozzle Cascade
,”
J. Eng. Power
,
103
(
2
), pp.
257
263
.
You do not currently have access to this content.