The influence of ground effect on the wake of a high-speed train (HST) is investigated by an improved delayed detached-eddy simulation. Aerodynamic forces, the time-averaged and instantaneous flow structure of the wake are explored for both the stationary ground and the moving ground. It shows that the lift force of the trailing car is overestimated, and the fluctuation of the lift and side force is much greater under the stationary ground, especially for the side force. The coexistence of multiscale vortex structures can be observed in the wake along with vortex stretching and pairing. Furthermore, the out-of-phase vortex shedding and oscillation of the longitudinal vortex pair in the wake are identified for both ground configurations. However, the dominant Strouhal number of the vortex shedding for the stationary and moving ground is 0.196 and 0.111, respectively, due to the different vorticity accumulation beneath the train. A conceptual model is proposed to interpret the mechanism of the interaction between the longitudinal vortex pair and the ground. Under the stationary ground, the vortex pair embedded in a turbulent boundary layer causes more rapid diffusion of the vorticity, leading to more intensive oscillation of the longitudinal vortex pair.

References

References
1.
Baker
,
C. J.
,
2014
, “
A Review of Train Aerodynamics Part 1–Fundamentals
,”
Aeronaut. J.
,
118
(
1201
), pp.
201
228
.
2.
Baker
,
C. J.
,
2014
, “
A Review of Train Aerodynamics Part 2–Applications
,”
Aeronaut. J
,
118
(
1202
), pp.
345
382
.
3.
Baker
,
C. J.
,
Quinn
,
A.
,
Sima
,
M.
,
Hoefener
,
L.
, and
Licciardello
,
R.
,
2014
, “
Full-Scale Measurement and Analysis of Train Slipstreams and Wakes. Part 1: Ensemble Averages
,”
Proc. Inst. Mech. Eng., Part F
,
228
(
5
), pp.
451
467
.
4.
Baker
,
C. J.
,
Quinn
,
A.
,
Sima
,
M.
,
Hoefener
,
L.
, and
Licciardello
,
R.
,
2014
, “
Full-Scale Measurement and Analysis of Train Slipstreams and Wakes. Part 2: Gust Analysis
,”
Proc. Inst. Mech. Eng., Part F
,
228
(
5
), pp.
468
480
.
5.
Tian
,
H. Q.
,
2007
,
Train Aerodynamics
,
China Railway Publishing House
,
Beijing
, Chaps. 3–5.
6.
Fey
,
U.
,
Klein
,
C.
,
Ondrus
,
V.
,
Loose
,
S.
, and
Wanger
,
C.
,
2013
, “
Investigation of Reynolds Number Effects in High-Speed Train Wind Tunnel Testing Using Temperature-Sensitive Paint
,”
2nd Symposium on Rail-Aerodynamics
, Berlin, pp.
15
17
.
7.
Bell
,
J. R.
,
Burton
,
D.
,
Thompson
,
M.
,
Herbst
,
A.
, and
Sheridan
,
J.
,
2014
, “
Wind Tunnel Analysis of the Slipstream and Wake of a High-Speed Train
,”
J. Wind Eng. Ind. Aerodyn.
,
134
, pp.
122
138
.
8.
Guihew
,
C
.,
1983
, “
Resistance to Forward Movement of TGV-PSE Train Sets: Evaluation of Studies and Results of Measurement
,”
French Railw. Rev.
,
1
(
1
), pp. 13–26.
9.
Baker
,
C. J.
,
1991
, “
Wind Tunnel Tests to Obtain Train Aerodynamic Drag Coefficients: Reynolds Number and Ground Simulation Effects
,”
J. Wind Eng. Ind. Aerodyn.
,
38
(
1
), pp.
23
28
.
10.
Tyll
,
J. S
,
Liu
,
D.
,
Schetz
,
J. A.
, and
Marchman
,
J. F.
,
1996
, “
Experimental Studies of Magnetic Levitation Train Aerodynamics
,”
AIAA J.
,
34
(
12
), pp.
2465
2470
.
11.
Kwon
,
H. B.
,
Park
,
Y. W.
,
Lee
,
D. H.
, and
Kim
,
M. S.
,
2001
, “
Wind Tunnel Experiments on Korean High-Speed Trains Using Various Ground Simulation Techniques
,”
J. Wind Eng. Ind. Aerodyn.
,
89
(
13
), pp.
1179
1195
.
12.
Yi
,
S. H.
,
Zou
,
J. J.
,
Wu
,
G. F.
,
Chen
,
H.
, and
Liu
,
C. Y.
,
1997
, “
Experimental Investigation for Ground Effects of the High Speed Train Models on a Plate With Uniform Boundary Suction
,”
Exp. Meas. Fluid Mech.
,
2
, pp.
95
100
.
13.
Hucho
,
W. H.
,
1998
,
Aerodynamics of Road Vehicles: From Fluid Mechanics to Vehicle Engineering
,
4th ed.
,
Society of Automotive Engineers
, Warrendale, PA, Chap. 13.
14.
Xia
,
C.
,
Shan
,
X. Z.
, and
Yang
,
Z. G.
,
2016
, “
Comparison of Different Ground Simulation Systems on the Flow Around a High-Speed Train
,”
Proc. Inst. Mech. Eng., Part F
,
231
(
2
), pp. 135–147.
15.
Hemida
,
H.
,
Krajnović
,
S.
, and
Davidson
,
L.
,
2005
, “
Large Eddy Simulations of the Flow Around a Simplified High Speed Train Under the Influence of Cross-Wind
,”
17th AIAA Computational Dynamics Conference
, Toronto, ON, Canada.
16.
Hemida
,
H.
, and
Krajnović
,
S.
,
2008
, “
LES Study of the Influence of a Train-Nose Shape on the Flow Structures Under Cross-Wind Conditions
,”
ASME J. Fluids Eng.
,
130
(
9
), p.
091101
.
17.
Muld
,
T.
,
Efraimsson
,
G.
, and
Hennigson
,
D. S.
,
2012
, “
Flow Structures Around a High-Speed Train Extracted Using Proper Orthogonal Decomposition and Dynamic Mode Decomposition
,”
Comput. Fluids
,
57
, pp.
87
97
.
18.
Yao
,
S. B.
,
Sun
,
Z. X.
,
Guo
,
D. L.
,
Chen
,
D. W.
, and
Yang
,
G. W.
,
2013
, “
Numerical Study on Wake Characteristics of High-Speed Trains
,”
Acta Mech. Sin.
,
29
(
6
), pp.
811
822
.
19.
Huang
,
S.
,
Hemida
,
H.
, and
Yang
,
M. Z.
,
2016
, “
Numerical Calculation of the Slipstream Generated by a CRH2 High-Speed Train
,”
Proc. Inst. Mech. Eng., Part F
,
230
(
1
), pp.
103
116
.
20.
Morden
,
J. A.
,
Hemida
,
H.
, and
Baker
,
C. J.
,
2015
, “
Comparison of RANS and Detached Eddy Simulation Results to Wind-Tunnel Data for the Surface Pressures Upon a Class 43 High-Speed Train
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041108
.
21.
Xia
,
C.
,
Shan
,
X. Z.
, and
Yang
,
Z. G.
,
2015
, “
Wall Interference Effect on the Aerodynamics of a High-Speed Train
,”
Proc. Eng.
,
126
, pp.
527
531
.
22.
Schetz
,
J. A.
,
2001
, “
Aerodynamics of High-Speed Trains
,”
Annu. Rev. Fluid Mech.
,
33
(
1
), pp.
371
414
.
23.
Xia
,
C.
,
Shan
,
X. Z.
,
Yang
,
Z. G.
, and
Li
,
Q. L.
,
2014
, “
Comparison Among Different Turbulence Models in Computation of Flow Around a Simplified Train
,”
J. Tongji Univ. (Nat. Sci.)
,
42
(
11
), pp.
1687
1693
.
24.
Baker
,
C. J.
,
2010
, “
The Flow Around High Speed Trains
,”
J. Wind Eng. Ind. Aerodyn.
,
98
, pp.
277
298
.
25.
Baker
,
C. J.
,
Dalley
,
S. J.
,
Johnson
,
T.
,
Quinn
,
A.
, and
Wright
,
N. G.
,
2001
, “
The Slipstream and Wake of a High-Speed Train
,”
Proc. Inst. Mech. Eng., Part F
,
215
(
2
), pp.
83
99
.
26.
Xia
,
C.
,
Shan
,
X. Z.
,
Yang
,
Z. G.
,
Li
,
Q. L.
, and
Chen
,
Y.
,
2015
, “
Influence of Ground Effect in Wind Tunnel on the Aerodynamics of a High Speed Train
,”
J. China Railw. Soc.
,
37
, pp.
8
16
.
27.
Gritskevich
,
M. S
, and
Garbaruk
,
A. V.
,
2012
, “
Development of DDES and IDDES Formulations for the k-Omega Shear Stress Transport Model
,”
Flow, Turbul. Combust.
,
88
(
3
), pp.
431
449
.
28.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2008
, “
A Hybrid RANS-LES Approach With Delayed-DES and Wall-Modelled LES Capabilities
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1638
1649
.
29.
Spalart
,
P. R.
,
2009
, “
Detached-Eddy Simulation
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
181
202
.
30.
Travin
,
A.
,
Shur
,
M. L
,
Strelets
,
M. K
, and
Spalart
,
P. R.
,
2000
, “
Physical and Numerical Upgrades in the Detached-Eddy Simulation of Complex Turbulent Flows
,”
412th Euromech Colloquium on LES and Complex Transitional and Turbulent Flows
, Munich, Germany, pp. 239–254.
31.
Schulte-Werning
,
B.
,
Heine
,
C.
, and
Matschke
,
G.
,
2003
, “
Unsteady Wake Characteristics of High Speed Trains
,”
PAMM Proceedings Applied Maths and Mechanics
,
2
(
1
), pp.
332
333
.
32.
Wu
,
J. Z.
,
Ma
,
H. Y.
, and
Zhou
,
M. D.
,
2006
,
Vorticity and Vortex Dynamics
,
Springer-Verlag
,
Berlin
, Chaps. 9–10.
33.
Wu
,
J. Z.
,
Ma
,
H. Y.
, and
Zhou
,
M. D.
,
2015
,
Vortical Flow
,
Springer-Verlag
,
Berlin
, Chap. 10–11.
34.
Pauley
,
W. R.
, and
Eaton
,
J. K.
,
1988
, “
Experimental Study of the Development of Longitudinal Vortex Pairs Embedded in a Turbulent Boundary Layer
,”
AIAA J.
,
26
(
7
), pp.
816
823
.
35.
Westphal
,
R. V.
, and
Mehta
,
R. D.
,
1989
, “
Interaction of an Oscillating Vortex With a Turbulent Boundary Layer
,”
Exp. Fluids
,
7
(6), pp.
405
411
.
36.
Lödgberg
,
O.
,
Fransson
,
J. H. M.
, and
Alfredsson
,
P. H.
,
2009
, “
Streamwise Evolution of Longitudinal Vortices in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
623
, pp.
27
58
.
37.
Perkins
,
H. J.
,
1970
, “
The Formation of Streamwise Vorticity in Turbulent Flow
,”
J. Fluid Mech.
,
44
(
04
), pp.
721
740
.
You do not currently have access to this content.