In this paper, we consider the evolution of decaying homogeneous anisotropic turbulence without mean velocity gradients, where only the slow pressure rate of strain is nonzero. A higher degree nonlinear return-to-isotropy model has been developed for the slow pressure–strain correlation, considering anisotropies in Reynolds stress, dissipation rate, and length scale tensor. Assumption of single length scale across the flow is not sufficient, from which stems the introduction of length scale anisotropy tensor, which has been assumed to be a linear function of Reynolds stress and dissipation tensor. The present model with anisotropy in length scale shows better agreement with well-accepted experimental results and an improvement over the Sarkar and Speziale (SS) quadratic model.

References

References
1.
Prandtl
,
L.
,
1925
, “
Bericht Uber Untersuchungen zur Ausgebildeten Turbulenz
,”
Z. Angew. Math. Mech.
,
5
, pp.
136
139
.
2.
Prandtl
,
L.
, and
Tietjens
,
O. G.
,
1934
,
Fundamentals of Hydro- and Aero- Mechanics
,
McGraw-Hill
,
New York
.
3.
Prandtl
,
L.
, and
Tietjens
,
O. G.
,
1934
,
Applied Hydro- and Aero-Mechanics
,
McGraw-Hill
,
New York
.
4.
Cebeci
,
T.
, and
Smith
,
A. M. O.
,
1974
,
Analysis of Turbulent Boundary Layers
,
Academic Press
,
Amsterdam, The Netherlands
.
5.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
P.
,
1975
, “
Progress in the Development of Reynolds Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.
6.
Sarkar
,
S.
, and
Speziale
,
C.
,
1990
, “
A Simple Non-Linear Model for Return to Isotropy in Turbulence
,”
Phys. Fluids A
,
2
(
1
), pp.
84
93
.
7.
Harlow
,
F.
, and
Nakayama
,
P.
,
1967
, “
Turbulence Transport Equations
,”
Phys. Fluids
,
10
(
11
), pp.
2323
2332
.
8.
Harlow
,
F.
, and
Nakayama
,
P.
,
1968
, “
Transport of Turbulence Energy Decay Rate
,” Technical Report,
Los Alamos National Laboratory
, Los Alamos, NM, Report No. LA-3854.
9.
Daly
,
B.
, and
Harlow
,
F.
,
1970
, “
Transport Equations of Turbulence
,”
Phys. Fluids
,
13
(
11
), pp.
2634
2649
.
10.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
, “
Mathematical Models of Turbulence
,”
Academic Press
,
Amsterdam, The Netherlands
.
11.
Chou
,
P. Y.
,
1945
, “
On Velocity Correlations and the Solutions of the Equations of Turbulent Fluctuation
,”
Q. Appl. Math.
,
3
(
1
), pp.
38
54
.
12.
Hanjalic
,
K.
,
Jakirlic
,
S.
, and
Hadzic
,
I.
,
1997
, “
Expanding the Limits of ‘Equilibrium’ Second-Moment Turbulence Closures
,”
Fluid Dyn. Res.
,
20
(
1–6
), pp.
25
41
.
13.
Launder
,
B. E.
,
2005
, “
Second-Moment Closure and Its Use in Modeling Turbulent Industrial Flows
,”
Int. J. Numer. Methods Fluids
,
9
(
8
), pp.
963
985
.
14.
Lumley
,
J. L.
,
1978
, “
Computational Modeling of Turbulent Flows
,”
Adv. Appl. Mech.
,
18
, pp.
123
176
.
15.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
16.
Sagaut
,
P.
, and
Cambon
,
C.
,
2008
,
Homogeneous Turbulence Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
17.
Choi
,
K.–S.
, and
Lumley
,
J. L.
,
2001
, “
The Return to Isotropy of Homogeneous Turbulence
,”
J. Fluid Mech.
,
436
, pp.
59
84
.
18.
Warhaft
,
Z.
,
2000
, “
Passive Scalars in Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
32
, pp.
203
240
.
19.
Rotta
,
J. C.
,
1951
, “
Statistische Theorie Nichtomogener Turbulentz
,”
Z. Phys.
,
129
(
6
), pp.
547
572
.
20.
Champagne
,
F. H.
,
Harris
,
V. G.
, and
Corrsin
,
S.
,
1970
, “
Experiments on Nearly Homogeneous Turbulent Shear Flow
,”
J. Fluid Mech.
,
41
(
1
), pp.
81
139
.
21.
Le Penven
,
L.
,
Gence
,
J. N.
, and
Comte-Bellot
,
G.
,
1985
, “
On the Approach to Isotropy of Homogeneous Turbulence: Effect of the Partition of Kinetic Energy Among the Velocity Components
,”
Frontiers in Fluid Mechanics
,
Springer-Verlag
,
Berlin
, pp.
1
21
.
22.
Choi
,
K. S.
, and
Lumley
,
J. L.
,
1984
, “
Return to Isotropy of Homogeneous Turbulence Revisited
,” Turbulence and Chaotic Phenomena in Fluids, Vol.
1
,
T.
Tatsumi
, ed.,
North-Holland
,
Amsterdam, The Netherlands
, pp.
267
272
.
23.
Basara
,
B.
, and
Younis
,
B. A.
,
1995
, “
Prediction of Turbulent Flows in Dredged Trenches
,”
J. Hydraul. Res.
,
33
(
6
), pp.
813
824
.
24.
Warrior
,
H. V.
,
Mathews
,
S.
,
Maity
,
S.
, and
Sasmal
,
K.
,
2014
, “
An Improved Model for the Return to Isotropy of Homogeneous Turbulence
,”
ASME J. Fluids Eng.
,
136
(
6
), p.
034501
.
25.
Chung
,
M. K.
, and
Kim
,
S. K.
,
1995
, “
A Nonlinear Return-to-Isotropy Model With Reynolds Number and Anisotropy Dependency
,”
Phys. Fluids
,
7
(
6
), pp.
1425
1437
.
26.
Kassinos
,
S. C.
,
Reynolds
,
W. C.
, and
Rogers
,
M. M.
,
2001
, “
One-Point Turbulence Structure Tensors
,”
J. Fluid Mech.
,
428
, pp.
213
248
.
27.
Hallback
,
M.
,
Groth
,
J.
, and
Johansson
,
A.
,
1990
, “
An Algebraic Model for Nonisotropic Turbulent Dissipation Rate in Reynolds Stress Closures
,”
Phys. Fluids A
,
2
(
10
), pp.
0899
8213
.
28.
Sjögren
,
T.
, and
Johansson
,
A. V.
,
2000
, “
Development and Calibration of Algebraic Nonlinear Models for Terms in the Reynolds Stress Transport Equations
,”
Phys. Fluids (1994-Present)
,
12
(
6
), pp.
1554
1572
.
29.
Mishra
,
A. A.
, and
Girimaji
,
S.
,
2013
, “
Intercomponent Energy Transfer in Incompressible Homogeneous Turbulence: Multi-Point Physics and Amenability to One-Point Closures
,”
J. Fluid Mech.
,
731
, pp.
639
681
.
30.
Mishra
,
A. A.
, and
Girimaji
,
S.
,
2010
, “
Pressure–Strain Correlation Modeling: Towards Achieving Consistency With Rapid Distortion Theory
,”
Flow, Turbul. Combust.
,
85
(
3–4
), pp.
593
619
.
31.
Breuer
,
S.
,
Oberlack
,
M.
, and
Peters
,
N.
,
2005
, “
Non-Isotropic Length Scales During the Compression Stroke of a Motored Piston Engine
,”
Flow, Turbul. Combust.
,
74
(
2
), pp.
145
167
.
32.
Speziale
,
C. G.
,
Sarkar
,
S.
, and
Gatski
,
T. B.
,
1991
, “
Modelling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach
,”
J. Fluid Mech.
,
227
, pp.
245
272
.
33.
Hallbäck
,
M.
,
Johansson
,
A. V.
, and
Burden
,
A. D.
,
1996
, “
The Basics of Turbulence Modelling
,”
Turbulence and Transition Modelling
,
Springer
, Dordrecht,
The Netherlands
, pp.
81
154
.
34.
Pope
,
S. B.
,
1985
, “
PDF Methods for Turbulent Reactive Flows
,”
Prog. Energy Combust. Sci.
,
11
(
2
), pp.
119
192
.
35.
Mishra
,
A. A.
, and
Girimaji
,
S.
,
2014
, “
On the Realizability of Pressure–Strain Closures
,”
J. Fluid Mech.
,
755
, pp.
535
560
.
36.
Cambon
,
C.
,
Jacquin
,
L.
, and
Lubrano
,
J. L.
, “
Toward a New Reynolds Stress Model for Rotating Turbulent Flows
,”
Phys. Fluids A: Fluid Dyn. (1989–1993)
,
4
(
4
), pp.
812
824
.
37.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
,
2nd ed.
,
DCW Industries
,
La Cañada, CA
.
38.
Mons
,
V.
,
Cambon
,
C.
, and
Sagaut
,
P.
,
2016
, “
A Spectral Model for Homogeneous Shear-Driven Anisotropic Turbulence in Terms of Spherically-Averaged Descriptors
,”
J. Fluid Mech.
,
788
, pp.
147
182
.
39.
Fu
,
S.
,
Launder
,
B. E.
, and
Tselepidakis
,
D. P.
,
1987
, “
Accomodating the Effects of High Strain Rates in Modeling the Pressure-Strain Correlation
,” Technical Report, UMIST Mechanical Engineering Department, Report No. TFD/87/5.
40.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
, Hemisphere Publishing Corporation,
Taylor and Francis Group
,
New York
.
You do not currently have access to this content.