Francis turbine working at off-design operating condition experiences high swirling flow at the runner outlet. In the present study, a high head model Francis turbine was experimentally investigated during load rejection, i.e., best efficiency point (BEP) to part load (PL), to detect the physical mechanism that lies in the formation of vortex rope. For that, a complete measurement system of dynamic pressure, head, flow, guide vanes (GVs) angular position, and runner shaft torque was setup with corresponding sensors at selected locations of the turbine. The measurements were synchronized with the two-dimensional (2D) particle image velocimetry (PIV) measurements of the draft tube. The study comprised an efficiency measurement and maximum hydraulic efficiency of 92.4 ± 0.15% was observed at BEP condition of turbine. The severe pressure fluctuations corresponding to rotor–stator interaction (RSI), standing waves, and rotating vortex rope (RVR) have been observed in the draft tube and vaneless space of the turbine. Moreover, RVR in the draft tube has been decomposed into two different modes; rotating and plunging modes. The time of occurrence of both modes was investigated in pressure and velocity data and results showed that the plunging mode appears 0.8 s before the rotating mode. In the vaneless space, the plunging mode was captured before it appears in the draft tube. The physical mechanism behind the vortex rope formation was analyzed from the instantaneous PIV velocity vector field. The development of stagnation region at the draft tube center and high axial velocity gradients along the draft tube centerline could possibly cause the formation of vortex rope.

References

1.
Trivedi
,
C.
,
Gandhi
,
B. K.
, and
Cervantes
,
M.
,
2013
, “
Effect of Transients on Francis Turbine Runner Life: A Review
,”
J. Hydraul. Res.
,
51
(
2
), pp.
121
132
.
2.
Trivedi
,
C.
,
Cervantes
,
M.
,
Gandhi
,
B. K.
, and
Dahlhaug
,
O. G.
,
2014
, “
Pressure Measurements on a High Head Francis Turbine During Load Acceptance and Rejection
,”
J. Hydraul. Res.
,
52
(
2
), pp.
283
297
.
3.
Amiri
,
K.
,
Mulu
,
B.
,
Raisee
,
M.
, and
Cervantes
,
M.
,
2015
, “
Unsteady Pressure Measurements on the Runner of a Kaplan Turbine During Load Acceptance and Load Rejection
,”
J. Hydraul. Res.
,
54
(
1
), pp.
56
73
.
4.
Vekve
,
T.
, and
Skåre
,
P. E.
,
2002
, “
Velocity and Pressure Measurements in the Draft Tube on a Model Francis Pump Turbine
,”
21st Symposium on Hydraulic Machinery and Systems
, Lausanne, Switzerland, pp. 9–12.
5.
Vekve
,
T.
,
2004
, “
An Experimental Investigation of Draft Tube Flow
,”
Ph.D. thesis
, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
6.
Kobro
,
E.
,
Dahlhaug
,
O. G.
, and
Nielsen
,
T. K.
,
2008
, “
On-Board Pressure Measurement in Francis Model Runner
,”
24th IAHR Symposium on Hydraulic Machinery and Systems
, Foz Do Iguazzu, Brazil.
7.
Kobro
,
E.
,
2010
, “
Measurement of Pressure Pulsation in Francis Turbines
,” Ph.D. thesis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
8.
Ciocan
,
G. D.
,
Avellan
,
F.
, and
Kueny
,
J. L.
,
2000
, “
Optical Measurement Techniques for Experimental Analysis of Hydraulic Turbines Rotor-Stator Interaction
,”
ASME
Paper No. FEDSM2000-11056.
9.
Iliescu
,
M. S.
,
Ciocan
,
G. D.
, and
Avellan
,
F.
,
2002
, “
3D PIV and LDV Measurements at the Outlet of a Francis Turbine Draft Tube
,”
ASME
Paper No. FEDSM2002-31332.
10.
Müller
,
A.
,
Bullani
,
A.
,
Dreyer
,
M.
,
Roth
,
S.
,
Favrel
,
A.
,
Landry
,
C.
, and
Avellan
,
F.
,
2012
, “
Interaction of a Pulsating Vortex Rope With the Local Velocity Field in a Francis Turbine Draft Tube
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
15
(
3
), p.
032040
.
11.
Nishi
,
M.
,
Matsunaga
,
S.
,
Kubota
,
T.
, and
Senoo
,
Y.
,
1982
, “
Study on Swirl Flow and Surge in an Elbow Type Draft Tube
,”
10th IAHR Symposium
, Tokyo, Japan, Vol.
1
, pp.
557
568
.
12.
Tridon
,
S.
,
Barre
,
S.
,
Ciocan
,
G. D.
, and
Tomas
,
L.
,
2010
, “
Experimental Analysis of the Swirling Flow in Francis Turbine Draft Tube: Focus on Radial Velocity Component Determination
,”
Eur. J. Mech., B: Fluids
,
29
(
4
), pp.
321
335
.
13.
Harvey
,
J.
,
1962
, “
Some Observations of the Vortex Breakdown Phenomenon
,”
J. Fluid Mech.
,
14
(
04
), pp.
585
592
.
14.
Sarpkaya
,
T.
,
1971
, “
On Stationary and Travelling Vortex Breakdowns
,”
J. Fluid Mech.
,
45
(
03
), pp.
545
559
.
15.
Benjamin
,
T. B.
,
1962
, “
Theory of the Vortex Breakdown Phenomenon
,”
J. Fluid Mech.
,
14
(
04
), pp.
593
629
.
16.
Hall
,
M.
,
1967
, “
A New Approach to Vortex Breakdown
,”
Proceedings of the Heat Transactions and Fluid Mechanics Institute, University of California, San Diego, La Jolla, CA
, pp. 319–340
.
17.
Broadhurst
,
M. S.
,
2006
, “
Vortex Stability and Breakdown: Direct Numerical Simulation and Stability Analysis Using BiGlobal and Parabolized Formulations
,” Ph.D. thesis, Department of Aeronautics, Imperial College London, South Kensington Campus, London.
18.
Favrel
,
A.
,
Muller
,
A.
,
Landry
,
C.
,
Yamamoto
,
K.
, and
Avellan
,
F.
,
2015
, “
Study of the Vortex-Induced Pressure Excitation Source in a Francis Turbine Draft Tube by Particle Image Velocimetry
,”
Exp. Fluids
,
56
(
12
), p.
215
.
19.
Keck
,
K.
, and
Sick
,
M.
,
2008
, “
Thirty Years of Numerical Flow Simulations in Hydraulic Turbomachines
,”
Acta Mech.
,
201
, pp.
211
229
.
20.
Cervantes
,
M. J.
,
Andersson
,
U.
, and
Lövgren
,
H. M.
,
2014
, “
Turbine-99 Unsteady Simulations—Validation
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
12
(
1
), pp.
1
10
.
21.
Müller
,
A.
,
Dreyer
,
M.
,
Andreini
,
N.
, and
Avellan
,
F.
,
2013
, “
Draft Tube Discharge Fluctuations During Self-Sustained Pressure Surge: Fluorescent Particle Image Velocimetry in Two-Phase Flow
,”
Exp. Fluids
,
54
, p.
1514
.
22.
Tridon
,
S.
,
Ciocan
,
G. D.
,
Barre
,
S.
, and
Tomas
,
L.
,
2008
, “
3D Time-Resolved PIV Measurement in a Francis Turbine Draft Tube
,”
IAHR
24th Symposium on Hydraulic Machinery and Systems
, Foz do Iguassu, Brazil, Oct. 27–31.
23.
Iliescu
,
M. S.
,
Ciocan
,
G. D.
, and
Avellan
,
F.
,
2008
, “
Analysis of the Cavitating Draft Tube Vortex in a Francis Turbine Using Particle Image Velocimetry Measurements in Two-Phase Flow
,”
ASME J. Fluids Eng.
,
130
(
2
), p.
021105
.
24.
Wen-Tao
,
S.
,
Xiao-Bin
,
L.
,
Feng-Chen
,
L.
,
Xian-Zhu
,
W.
,
Wen-Fu
,
H.
, and
Shu-Hong
,
L.
,
2014
, “
Experimental Investigation on the Characteristics of Hydrodynamic Stabilities in Francis Hydro Turbine Models
,”
Adv. Mech. Eng.
,
6
, p.
486821
.
25.
Hasmatuchi
,
V.
,
Roth
,
S.
,
Botero
,
F.
,
Avellan
,
F.
, and
Farhat
,
M.
,
2010
, “
High-Speed Flow Visualization in a Pump-Turbine Under Off-Design Operating Conditions
,”
Earth Environ. Sci.
,
12
(
1
), pp.
1
8
.
26.
Susan-Resiga
,
R.
, Muntean, S., Stuparu, A., Bosioc, A. I., Tanasa, C., and Ighisan, C.,
2016
, “
A Variational Model of Swirling Flow States With Stagnation Region
,”
Eur. J. Mech. B: Fluids
,
55
(Pt. 1), pp.
104
115
.
27.
Bosioc
,
A. I.
,
Resiga
,
R. S.
,
Muntean
,
S.
, and
Tanasa
,
C.
,
2012
, “
Unsteady Pressure Analysis of a Swirling Flow With Vortex Rope and Axial Water Injection in a Discharge Cone
,”
ASME J. Fluids Eng.
,
134
(
8
), p.
081104
.
28.
Amiri
,
K.
,
Cervantes
,
M. J.
, and
Mulu
,
B.
,
2015
, “
Experimental Investigation of the Hydraulic Loads on the Runner of a Kaplan Turbine Model and the Corresponding Prototype
,”
J. Hydraul. Res.
,
53
(
4
), pp.
452
465
.
29.
Cervantes
,
M. J.
,
Trivedi
,
C.
,
Dahlhaug
,
O. G.
, and
Nielsen
,
T.
,
2015
, “
Francis-99 Workshops 1: Steady Operations of Francis Turbine
,”
J. Phys.: Conf. Ser.
,
579
, p.
011001
.
30.
Dorfler
,
P.
,
Sick
,
M.
, and
Coutu
,
A.
,
2013
,
Flow-Induced Pulsation and Vibration in Hydroelectric Machinery
,
Springer
, London.
31.
Trivedi
,
C.
,
Cervantes
,
M.
,
Gandhi
,
B. K.
, and
Dahlhaug
,
O. G.
,
2014
, “
Experimental and Numerical Studies for a High Head Francis Turbine at Several Operating Points
,”
ASME J. Fluids Eng.
,
135
(
11
), p.
111102
.
32.
IEC
,
1991
, “
Field Acceptance Tests to Determine the Hydraulic Performance of Hydraulic Turbines, Storage Pumps and Pump-Turbines
,” 3rd ed., Geneva, Switzerland, Standard No. IEC 60041: 1991-11.
33.
IEC
,
1999
, “
Hydraulic Turbines, Storage Pumps and Pump-Turbines—Model Acceptance Tests
,” Geneva, Switzerland, Standard No. IEC 60193: 1999-11.
34.
ASME
,
2011
, “
Hydraulic Turbines and PumpTurbines: Performance Test Codes
,” ASME, New York, Standard No. ASME PTC 18-2011.
35.
Garcia
,
D.
,
2010
, “
Robust Smoothing of Gridded Data in One and Higher Dimensions With Missing Values
,”
Comput. Stat. Data Anal.
,
54
(
4
), pp.
1167
1178
.
36.
Garcia
,
D.
,
2011
, “
A Fast All in One Method for Automated Post-Processing of PIV Data
,”
Exp. Fluids
,
50
(
5
), pp.
1247
1259
.
37.
Andersson
,
U.
,
2001
, “
Test Case T-Some New Results and Updates Since Workshop 1
,” The Second ERCOFTAC Workshop on Draft Tube Flow, Turbine 99, Alvkarleby, Sweden, June 18–20.
38.
Sundstrom
,
J.
,
Amiri
,
K.
,
Bergan
,
C.
,
Cervantes
,
M. J.
, and
Dahlhaug
,
O. G.
,
2014
, “
LDA Measurements in the Francis-99 Draft Tube Cone
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
, p.
032040
.
39.
Koschatzky
,
V.
,
Boersma
,
B. J.
,
Scarano
,
F.
, and
Wasterweel
,
J.
,
2011
, “
High Speed PIV Applied to Aerodynamic Noise Investigation
,”
Exp. Fluids
,
50
(
4
), pp.
863
879
.
40.
Mauri
,
S.
,
Kueny
,
J. L.
, and
Avellan
,
F.
,
2004
, “
Werlé–Legendre Separation in a Hydraulic Machine Draft Tube
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
976
980
.
41.
Foroutan
,
H.
, and
Yavuzkurt
,
S.
,
2014
, “
Flow in the Simplified Draft Tube of a Francis Turbine Operating at Partial Load—Part I: Simulation of the Vortex Rope
,”
ASME J. Fluids Eng.
,
81
(
6
), p.
061010
.
You do not currently have access to this content.