In this paper, a new cubic subgrid-scale (SGS) model is proposed to capture the rotation effect. Different from the conventional nonlinear model with second-order term, the new model contains a cubic term which is originated in the Reynolds stress closure. All the three model coefficients are determined dynamically using the Germano’s identity. The model is examined in the rotating turbulent channel flow and the Taylor–Couette flow. Comparing with the linear model and the second-order model, the new model shows better performance.

References

References
1.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations—I: The Basic Equations
,”
Mon. Weather
,
91
(
3
), pp.
99
164
.
2.
Deardorff
,
J. W.
,
1974
, “
Three-Dimensional Numerical Study of the Height and Mean Structure of a Heated Planetary Boundary Layer
,”
Boundary-Layer Meteorol.
,
7
(1), pp.
81
106
.
3.
Sagaut
,
P.
,
2006
,
Large Eddy Simulation for Incompressible Flows
,
Springer
,
Berlin
.
4.
Tao
,
B.
,
Katz
,
J.
, and
Meneveau
,
C.
,
2002
, “
Statistical Geometry of Subgrid-Scale Stresses Determined From Holographic Particle Image Velocimetry Measurements
,”
J. Fluid Mech.
,
457
, pp.
35
78
.
5.
Horiuti
,
K.
,
2003
, “
Roles of Non-Aligned Eigenvectors of Strain-Rate and Subgrid-Scale Stress Tensors in Turbulence Generation
,”
J. Fluid Mech.
,
491
, pp.
65
100
.
6.
Rivlin
,
R. S.
,
1957
, “
The Relation Between the Flow of Non-Newtonian Fluids and Turbulent Newtonian Fluids
,”
Q. Appl. Math.
,
15
(2), pp.
1941
1944
.
7.
Lund
,
T. S.
, and
Novikov
,
E. A.
,
1992
, “
Parametrization of Subgrid-Scale Stress by the Velocity Gradient Tensor
,”
Annual Research Briefs, Center for Turbulence Research
, Stanford, CA, pp.
27
43
.
8.
Kosovic
,
B.
,
1997
, “
Subgrid-Scale Modelling for the Large-Eddy Simulation of High-Reynolds-Number Boundary Layers
,”
J. Fluid Mech.
,
336
, pp.
151
182
.
9.
Wang
,
B. C.
, and
Bergstrom
,
D. J.
,
2005
, “
A Dynamic Nonlinear Subgrid-Scale Stress Model
,”
Phys. Fluids
,
17
(
3
), p.
035109
.
10.
Germano
,
M.
,
1992
, “
Turbulence: the Filtering Approach
,”
J. Fluid Mech.
,
238
, pp.
325
336
.
11.
Xun
,
Q. Q.
,
Wang
,
B. C.
, and
Yee
,
E.
,
2011
, “
Large-Eddy Simulation of Turbulent Heat Convection in a Spanwise Rotating Channel Flow
,”
Int. J. Heat Mass Transfer
,
54
(1–3), pp.
698
716
.
12.
Shih
,
T. H.
,
Zhu
,
J.
, and
Liou
,
W.
,
1997
, “
Modeling of Turbulent Swirling Flows
,” NASA Technical Memorandum 113112, 19970034949, pp. 1–56.
13.
Craft
,
T. J.
,
Launder
,
B. E.
, and
Suga
,
K.
,
1996
, “
Development and Application of a Cubic Eddy-Viscosity Model of Turbulence
,”
Int. J. Heat Fluid Flow
,
17
(
2
), pp.
108
115
.
14.
Lily
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
,
4
(
3
), pp.
633
635
.
15.
Park
,
N.
,
Lee
,
S.
,
Lee
,
J.
, and
Choi
,
H.
,
2006
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model With a Global Model Coefficient
,”
Phys. Fluids
,
18
(12), pp.
1
24
.
16.
Yang
,
Z. X.
,
Cui
,
G. X.
,
Xu
,
C. X.
, and
Zhang
,
Z.
,
2012
, “
Large Eddy Simulation of Rotating Turbulent Channel Flow With a New Dynamic Global-Coefficient Nonlinear Subgrid Stress Model
,”
J. Turbul.
,
13
(48), pp.
1
20
.
17.
OpenCFD
,
2012
, OpenFOAM®, The Open Source CFD Toolbox,
User Guide
,
OpenCFD
,
Berkshire, UK
.
18.
Kristoffersen
,
R.
, and
Andersson
,
H. I.
,
1993
, “
Direct Simulations of Low-Reynolds-Number Turbulent Flow in a Rotating Channel
,”
J. Fluid Mech.
,
256
, pp.
163
197
.
19.
Grundestam
,
O.
,
Wallin
,
S.
, and
Johansson
,
A. V.
,
2008
, “
Direct Numerical Simulations of Rotating Turbulent Channel Flow
,”
J. Fluid Mech.
,
598
, pp.
177
199
.
20.
Johnston
,
J. P.
,
Halleent
,
R. M.
, and
Lezius
,
D. K.
,
1972
, “
Effects of Spanwise Rotation on Structure of Two-Dimensional Fully Developed Turbulent Channel Flow
,”
J. Fluid Mech.
,
56
(03), pp.
533
557
.
21.
Bazilevs
,
Y.
, and
Akkerman
,
I.
,
2010
, “
Large Eddy Simulation of Turbulent Taylor–Couette Flow Using Isogeometric Analysis and the Residual-Based Variational Multiscale Method
,”
J. Comput. Phys.
,
229
(
9
), pp.
3402
3414
.
22.
Dong
,
S.
,
2007
, “
Direct Numerical Simulation of Turbulent Taylor–Couette Flow
,”
J. Fluid Mech.
,
587
, pp.
373
393
.
23.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.