Experimental results of the void fraction, statistical chord length distribution (CLD), and bubble size distribution (BSD) inside and downstream of hydrodynamic cavities are presented at the laboratory scale. Various cavitating flows have been intensively studied in water tunnels for several decades, but no corresponding quantitative CLD and BSD data were reported. This experimental study is aimed at elaboration of a general approach to measure CLD in typical cavitating flows. Dual-tip electrical impedance probe (dtEIP) is used to measure the void fraction and CLD in different cavitation flows over a flat plate, including both supercavitation and sheet/cloud cavitation. For supercavitating flows, the void fraction of vapor is unity in the major cavity region. In contrast, the maximum void fraction inside the sheet/cloud cavitation region is less than unity in the present studies. The high vapor concentration region is located in the center of the cavity region. Based on the experimental data of CLD, it is found that the mean chord lengths are around 2.9–4.8 mm and 1.9–4.4 mm in the center region and closure region, respectively. The backward converting bubble diameters at the peak of BSD have similar magnitude, with probability density values exceeding 0.2. Empirical parameters of CLD and BSD are obtained for different cavity regions.

References

References
1.
Brennen
,
C.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
, New York.
2.
Lee
,
I.
,
Mäkiharju
,
S.
,
Ganesh
,
H.
, and
Ceccio
,
S.
,
2016
, “
Scaling of Gas Diffusion Into Limited Partial Cavities
,”
ASME J. Fluid Eng.
,
138
(
5
), p.
051301
.
3.
Blake
,
J.
, and
Gibson
,
D.
,
1987
, “
Cavitation Bubbles Near Boundaries
,”
Annu. Rev. Fluid Mech.
,
19
(
1
), pp.
99
123
.
4.
Brennen
,
C.
,
2005
,
Fundamentals of Multiphase Flow
,
Cambridge University Press
, New York.
5.
Gopalan
,
S.
, and
Katz
,
J.
,
2000
, “
Flow Structure and Modeling Issues in the Closure Region of Attached Cavitation
,”
Phys. Fluids.
,
12
(
4
), pp.
895
911
.
6.
Fuster
,
D.
, and
Colonius
,
T.
,
2011
, “
Modelling Bubble Clusters in Compressible Liquids
,”
J. Fluid Mech.
,
688
, pp.
352
389
.
7.
Hsiao
,
C.
, and
Chahine
,
G.
,
2012
, “
Effect of a Propeller and Gas Diffusion on Bubble Nuclei Distribution in a Liquid
,”
J. Hydrodyn.
,
24
(
6
), pp.
809
822
.
8.
Ma
,
J.
,
Hsiao
,
C.
, and
Chahine
,
G.
,
2015
, “
Euler-Lagrange Simulations of Bubble Cloud Dynamics Near a Wall
,”
ASME J. Fluid Eng.
,
137
(
4
), p.
041301
.
9.
Chahine
,
G.
,
Franc
,
J.
, and
Karimi
,
A.
,
2014
, “
Cavitation and Cavitation Erosion
,”
Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction
,
Springer Science
, Dordrecht, The Netherlands.
10.
Ceccio
,
S.
, and
Brennen
,
S.
,
1991
, “
Observations of the Dynamics and Acoustics of Travelling Bubble Cavitation
,”
J. Fluid Mech.
,
233
, pp.
633
660
.
11.
Coutier-Delgosha
,
O.
,
Devillers
,
J.
, and
Pichon
,
T.
,
2006
, “
Internal Structure and Dynamics of Sheet Cavitation
,”
Phys. Fluids
,
18
(
1
), p.
017103
.
12.
Coutier-Delgosha
,
O.
,
Stutz
,
B.
,
Vabre
,
A.
, and
Legoupil
,
S.
,
2007
, “
Analysis of Cavitating Flow Structure by Experimental and Numerical Investigations
,”
J. Fluid Mech.
,
578
, pp.
171
222
.
13.
Mäkiharju
,
S.
,
Gabillet
,
C.
,
Paik
,
B.
,
Chang
,
N.
,
Perlin
,
M.
, and
Ceccio
,
S.
,
2013
, “
Time-Resolved two-Dimensional X-Ray Densitometry of a Two-Phase Flow Downstream of a Ventilated Cavity
,”
Exp. Fluids
,
54
(
7
), p.
1561
.
14.
Chang
,
N.
,
Ganesh
,
H.
,
Yakushiji
,
H.
, and
Ceccio
,
S.
,
2011
, “
Tip Vortex Cavitation Suppression by Active Mass Injection
,”
ASME J. Fluid Eng.
,
133
(
11
), p.
111301
.
15.
Pennings
,
S.
,
Westerweel
,
J.
, and
van Terwisga
,
T.
,
2015
, “
Flow Field Measurement Around Vortex Cavitation
,”
Exp. Fluids
,
56
(
11
), p.
206
.
16.
Ceccio
,
S.
, and
George
,
D.
,
1996
, “
A Review of Electrical Impedance Techniques for the Measurement of Multiphase Flows
,”
ASME J. Fluids Eng.
,
118
(
2
), pp.
391
399
.
17.
Besagni
,
G.
,
Guédon
,
G.
, and
Inzoli
,
F.
,
2015
, “
Annular Gap Bubble Column: Experimental Investigation and Computational Fluid Dynamics Modeling
,”
ASME J. Fluid Eng.
,
138
(1), p.
011302
.
18.
Lamarre
,
E.
, and
Melville
,
W.
,
1993
, “
Void-Fraction Measurements and Sound-Speed Fields in Bubble Plumes Generated by Breaking Waves
,”
J. Acoust. Soc. Am.
,
95
(
3
), pp.
1317
1328
.
19.
Blenkinsopp
,
C.
, and
Chaplin
,
J.
,
2007
, “
Void Fraction Measurements in Breaking Waves
,”
Proc. R. Soc. A
,
463
(2088), pp.
3151
3170
.
20.
Gabillet
,
C.
,
Colin
,
C.
, and
Fabre
,
J.
,
2002
, “
Experimental Study of Bubble Injection in a Turbulent Boundary Layer
,”
Int. J. Multiphase Flow
,
28
(
4
), pp.
553
578
.
21.
Stutz
,
B.
, and
Reboud
,
J.
,
1997
, “
Two-Phase Flow Structure of Sheet Cavitation
,”
Phys. Fluids
,
9
(
12
), pp.
3678
3686
.
22.
Stutz
,
B.
, and
Reboud
,
J.
,
1997
, “
Experiments on Unsteady Cavitation
,”
Exp. Fluids
,
22
(
3
), pp.
191
198
.
23.
Stutz
,
B.
, and
Legoupil
,
S.
,
2003
, “
X-Ray Measurements Within Unsteady Cavitation
,”
Exp. Fluids
,
35
(
2
), pp.
130
138
.
24.
Dias
,
S.
,
Franca
,
F.
, and
Rosa
,
E.
,
2000
, “
Statistical Method to Calculate Local Interfacial Variables in Two-Phase Bubbly Flows Using Intrusive Crossing Probes
,”
Int. J. Multiphase Flow
,
26
(
11
), pp.
1797
1830
.
25.
Buwa
,
V.
, and
Ranade
,
V.
,
2005
, “
Characterization of Gas-Liquid Flows in Rectangular Bubble Columns Using Conductivity Probes
,”
Chem. Eng. Commun.
,
192
(
9
), pp.
1129
1150
.
26.
Briancon-Marjollet
,
L.
,
Franc
,
J.
, and
Michel
,
J.
,
1990
, “
Transient Bubbles Interacting With an Attached Cavity and the Boundary Layer
,”
J. Fluid Mech.
,
218
, pp.
355
376
.
27.
Clark
,
N.
, and
Turton
,
R.
,
1988
, “
Chord Length Distributions Related to Bubble Size Distributions in Multiphase Flows
,”
Int. J. Multiphase Flow
,
14
(
4
), pp.
413
424
.
28.
Rüdisüli
,
M.
,
Schildhauer
,
T.
,
Biollaz
,
S.
, and
von Ommen
,
R.
,
2012
, “
Monte Carlo Simulation of the Bubble Size Distribution in a Fluidized Bed With Intrusive Probes
,”
Int. J. Multiphase Flows
,
44
, pp. 1–14.
29.
Liu
,
W.
, and
Clark
,
N.
,
1995
, “
Relationship Between Distribution of Chord Lengths and Distribution of Bubble Sizes Including Their Statistical Parameters
,”
Int. J. Multiphase Flows
,
21
(
6
), pp.
1073
1089
.
30.
Hoang
,
N.
,
Euh
,
D.
,
Yun
,
B.
, and
Song
,
C.-H.
,
2015
, “
A New Method of Relating a Chord Length Distribution to a Bubble Size Distribution for Vertical Bubbly Flows
,”
Int. J. Multiphase Flows
,
71
, pp.
23
31
.
31.
Liu
,
W.
,
Clark
,
N.
, and
Karmavruc
,
A.
,
1998
, “
Relationship Between Bubble Size Distribution and Chord Length Distribution in Heterogeneously Bubbling Systems
,”
Chem. Eng. Sci.
,
53
(
6
), pp.
1267
1276
.
32.
Clift
,
R.
,
Grace
,
J.
, and
Weber
,
M.
,
1978
,
Bubbles, Drops, and Particles
,
Academic Press
,
New York
.
33.
Knapp
,
R.
,
Daily
,
J.
, and
Hammitt
,
F.
,
1970
,
Cavitation
,
McGraw-Hill Book Company
,
New York
.
34.
Mendelson
,
H.
,
1967
, “
The Prediction of Bubble Terminal Velocities From Wave Theory
,”
AIChE J.
,
13
(
2
), pp.
250
253
.
35.
Kawanami
,
Y.
,
Kato
,
H.
, and
Yamaguchi
,
H.
,
1998
, “
Three-Dimensional Characteristics of the Cavities Formed on a Two-Dimensional Hydrofoil
,”
3rd International Symposium on Cavitation
, pp.
191
196
.
36.
Kjeldsen
,
M.
,
Arndt
,
R.
, and
Effertz
,
M.
,
2000
, “
Spectral Characteristics of Sheet/Cloud Cavitation
,”
ASME J. Fluid Eng.
,
122
(
3
), pp.
481
487
.
37.
Franc
,
J.
, and
Michel
,
J.
,
2004
,
Fundamentals of Cavitation
,
Kluwer Academic Publishers
, Dordrecht, The Netherlands.
38.
Knapp
,
R.
, and
A.
,
H.
,
1948
, “
Laboratory Investigations of the Mechanism of Cavitation
,”
Trans. ASME
,
70
, pp.
419
435
.
39.
White
,
F.
,
2006
,
Viscous Fluid Flow
,
McGraw-Hill
, New York.
40.
Brennen
,
C.
,
2002
, “
Fission of Collapsing Cavitation Bubbles
,”
J. Fluid Mech.
,
472
, pp.
153
166
.
41.
Frost
,
D.
,
1985
, “
Effects of Ambient Pressure on the Instability of a Liquid Boiling Explosively at the Superheat Limit
,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.
You do not currently have access to this content.