The evolution of a separated boundary layer over a model airfoil with semicircular leading-edge has been illustrated for angles of attack (α) varying from −3 deg to 10 deg, where the Reynolds number (Rec) based on chord is 1.6 × 105 and the inlet freestream turbulence (fst) being 1.2%. The features of boundary layer are described through measurements of velocity and surface pressure besides the flow visualization using a planar particle image velocimetry (PIV). Freestream perturbations are amplified because of enhanced receptivity of the separated boundary layer resulting in pockets of disturbances, which then propagate downstream attributing to random fluctuations near the reattachment. The separation and reattachment locations including the onset and end of transition are identified for changing α. The reattachment point changes from 18.8% to 47.7% of chord with the onset of separation at almost 7%, whereas the onset of transition moves upstream from 13.2% to 9% with increasing α. The bubble bursting occurs at α = 10 deg. The transition in the separated boundary layer occurs through Kelvin–Helmholtz (K–H) instability for α = 0 deg and 3 deg, whereas the K–H mechanism is bypassed for higher α with significant viscous effect.

References

1.
Gerakopulous
,
R.
,
Boutilier
,
M. S. H.
, and
Yarusevych
,
S.
,
2010
, “
Aerodynamic Characterisation of a NACA 0018 Airfoil at Low Reynolds Numbers
,”
AIAA
Paper No. 2010-4629.
2.
Jones
,
B. M.
,
1934
, “
Stalling
,”
J. R. Aeronaut. Soc.
,
38
(
285
), pp.
753
770
.
3.
Roshko
,
A.
, and
Lau
,
J. K.
,
1965
, “
Some Observations on Transition and Reattachment of a Free Shear Layer in Incompressible Flow
,”
Proceedings of the 1965 Heat Transfer and Fluid Mechanics Institute
, Stanford University Press, Stanford, CA, Vol.
18
, pp.
157
167
.
4.
Gaster
,
M.
,
1969
, “
The Structure and Behaviour of Laminar Separation Bubbles
,” Aeronautical Division N.P.L., Ministry of Technology, London, Reports and Memoranda No. 3595.
5.
Horton
,
H. P.
,
1968
, “
Laminar Separation Bubbles in Two and Three-Dimensional Incompressible Flow
,” Ph.D. thesis, University of London, London.
6.
Roberts
,
W. B.
,
1980
, “
Calculation of Laminar Separation Bubbles and Their Effect on Aerofoil Performance
,”
AIAA J.
,
18
(
1
), pp.
25
31
.
7.
Cherry
,
N. J.
,
Hiller
,
R.
, and
Latour
,
M. E. M. P.
,
1984
, “
Unsteady Measurements in a Separated and Reattaching Flow
,”
J. Fluid Mech.
,
144
, pp.
13
46
.
8.
Arena
,
A. V.
, and
Mueller
,
T. J.
,
1980
, “
Laminar Separation, Transition, and Turbulent Reattachment Near the Leading Edge of Airfoils
,”
AIAA J.
,
18
(
7
), pp.
747
753
.
9.
Watmuff
,
J. H.
,
1999
, “
Evolution of a Wave Packet Into Vortex Loops in a Laminar Separation Bubble
,”
J. Fluid Mech.
,
397
, pp.
119
169
.
10.
Dahnert
,
J.
,
Lyko
,
C.
, and
Peitsch
,
D.
,
2013
, “
Transition Mechanisms in Laminar Separated Flow Under Simulated Low Pressure Turbine Aerofoil Conditions
,”
ASME J. Turbomach.
,
135
(
1
), p.
011007
.
11.
Hu
,
H.
, and
Yang
,
Z.
,
2008
, “
An Experimental Study of the Laminar Flow Separation on a Low-Reynolds-Number Airfoil
,”
ASME J. Fluids Eng.
,
130
(
5
), p.
051101
.
12.
Hain
,
R.
,
Kahler
,
C. J.
, and
Radespiel
,
R.
,
2009
, “
Dynamics of Laminar Separation Bubbles at Low-Reynolds-Number Aerofoils
,”
J. Fluid Mech.
,
630
, pp.
129
153
.
13.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
,
2005
, “
Separation-Bubble-Transition Measurements on a Low-Re Airfoil Using Particle Image Velocimetry
,”
ASME
Paper No. GT2005-68663.
14.
Samson
,
A.
, and
Sarkar
,
S.
,
2016
, “
An Experimental Investigation of a Laminar Separation Bubble on the Leading-Edge of a Modelled Aerofoil for Different Reynolds Numbers
,”
Proc. Inst. Mech. Eng., Part C
,
230
(
13
), pp.
2208
2224
.
15.
Samson
,
A.
, and
Sarkar
,
S.
,
2016
, “
Effects of Free-Stream Turbulence on Transition of a Separated Boundary Layer Over the Leading-Edge of a Constant Thickness Aerofoil
,”
ASME J. Fluids Eng.
,
138
(
2
), p.
021202
.
16.
Pauley
,
L.
,
Moin
,
P.
, and
Reynolds
,
W. C.
,
1990
, “
The Structure of Two-Dimensional Separation
,”
J. Fluid Mech.
,
220
, pp.
397
411
.
17.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
,
2010
, “
Transition Mechanisms in Separation Bubbles Under Low- and Elevated-Freestream Turbulence
,”
ASME J. Turbomach.
,
132
(
1
), p.
011004
.
18.
Talan
,
M.
, and
Hourmouziadis
,
J.
,
2002
, “
Characteristic Regimes of Transitional Separation Bubbles in Unsteady Flow
,”
Flow
, Turbul. Combust.,
69
(3), pp.
207
227
.
19.
Yang
,
Z. Y.
, and
Voke
,
P. R.
,
2001
, “
Large-Eddy Simulation of Boundary Layer Separation and Transition at a Change of Surface Curvature
,”
J. Fluid Mech.
,
439
, pp.
305
333
.
20.
Tafti
,
D. K.
, and
Vanka
,
S. P.
,
1991
, “
A Three-Dimensional Numerical Study of Flow Separation and Reattachment on a Blunt Plate
,”
Phys. Fluids
,
3
(
12
), pp.
2887
2909
.
21.
Lin
,
J. C.
, and
Pauley
,
L. L.
,
1996
, “
Low-Reynolds Number Separation on an Airfoil
,”
AIAA J.
,
34
(
8
), pp.
1570
1577
.
22.
Spalart
,
P. R.
, and
Strelets
,
M. K.
,
2000
, “
Mechanisms of Transition and Heat Transfer in a Separation Bubble
,”
J. Fluid Mech.
,
403
, pp.
329
349
.
23.
Alam
,
M.
, and
Sandham
,
N. D.
,
2000
, “
Direct Numerical Simulation of Short Laminar Separation Bubbles With Turbulent Reattachment
,”
J. Fluid Mech.
,
410
, pp.
1
28
.
24.
Sarkar
,
S.
,
2007
, “
Effects of Passing Wakes on a Separating Boundary Layer Along a Low-Pressure Turbine Blade Through Large-Eddy Simulation
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
4
), pp.
551
564
.
25.
Sarkar
,
S.
,
2008
, “
Identification of Flow Structures on a LP Turbine Blade Due to Periodic Passing Wakes
,”
ASME J. Fluids Eng.
,
130
(
6
), p.
061103
.
26.
Langari
,
M.
, and
Yang
,
Z.
,
2013
, “
Numerical Study of the Primary Instability in a Separated Boundary Layer Transition Under Elevated Free-Stream Turbulence
,”
Phys. Fluids
,
25
(
7
), p.
074106
.
27.
Sarkar
,
S.
,
Babu
,
H.
, and
Sadique
,
J.
,
2016
, “
Interactions of Separation Bubble With Oncoming Wakes by LES
,”
ASME J. Heat Transfer
,
138
(
2
), pp.
1645
1656
.
28.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
,
2008
, “
Numerical Study of Instability Mechanisms Leading to Transition in Separation Bubbles
,”
ASME J. Turbomach.
,
130
(
2
), p.
021006
.
29.
Anand
,
K.
, and
Sarkar
,
S.
,
2014
, “
Experimental Investigation of Separated Shear Layer Over a Flat Plate for Various Angles of Attack and Tail Flat Deflections
,”
ASME
Paper No. GT2014-26113.
30.
Anand
,
K.
,
Sarkar
,
S.
, and
Thilakan
,
N.
,
2014
, “
Experiments on Leading-Edge Induced Separated Shear Layer Under Various Imposed Pressure Gradients
,”
ASME
Paper No. GTINDIA2014-8177.
31.
Yavuzkurt
,
S.
,
1984
, “
A Guide to Uncertainty Analysis of Hotwire Data
,”
ASME J. Fluids Eng.
,
106
(
2
), pp.
181
186
.
32.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.
33.
Crabtree
,
L. F.
,
1957
, “
Effects of Leading-Edge Separation on Thin Wings in Two-Dimensional Incompressible Flow
,”
J. Aeronaut. Sci.
,
24
(
8
), pp.
597
604
.
34.
Boutilier
,
M. S. H.
, and
Yarusevych
,
S.
,
2012
, “
Separated Shear Layer Transition Over an Airfoil at a Low Reynolds Number
,”
Phys. Fluids
,
24
(
8
), p.
084105
.
35.
Peterson
,
S. D.
, and
Plesniak
,
M. W.
,
2002
, “
Short-Hole Jet-in-Crossflow Velocity Field and Its Relationship to Film-Cooling Performance
,”
Exp. Fluids
,
33
(
6
), pp.
889
898
.
36.
Ol
,
M. V.
,
Hanff
,
E.
,
McAuliffe
,
B.
,
Scholz
,
U.
, and
Kaehler
,
C.
,
2005
, “
Comparison of Laminar Separation Bubble Measurements on a Low Reynolds Number Airfoil in Three Facilities
,”
AIAA
Paper No. 2005-5149.
37.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
,
2001
, “
Simulations of Bypass Transition
,”
J. Fluid Mech.
,
428
, pp.
185
212
.
38.
Dovgal
,
A.
,
Kozlov
,
V.
, and
Michalke
,
A.
,
1994
, “
Laminar Boundary Layer Separation: Instability and Associated Phenomena
,”
Prog. Aerosp. Sci.
,
30
(
1
), pp.
61
94
.
39.
Yarusevych
,
S.
,
Sullivan
,
P.
, and
Kawall
,
J. G.
,
2009
, “
On Vortex Shedding From an Airfoil in Low-Reynolds-Number Flows
,”
J. Fluid Mech.
,
632
, pp.
245
271
.
40.
Chandrasekar
,
S.
,
1961
,
Hydrodynamic and Hydromagnetic Stability
,
Clarendon Press
,
Oxford, UK
.
41.
Walker
,
G. J.
,
1989
, “
Transitional Flow on Axial Turbomachine Blading
,”
AIAA J.
,
27
(
5
), pp.
595
602
.
42.
Corrsin
,
S.
,
1943
, “
Investigation of Flow in an Axially Symmetrical Heated Jet of Air
,” National Advisory Committee for Aeronautics, Washington, DC, ACR No. 3L23.
43.
Kuan
,
C. L.
, and
Wang
,
T.
,
1990
, “
Investigation of the Intermittent Behaviour of Transitional Boundary Layer Using a Conditional Averaging Technique
,”
Exp. Therm. Fluid Sci.
,
3
(
2
), pp.
157
173
.
44.
Hedley
,
T. B.
, and
Keffer
,
J. F.
,
1974
, “
Turbulent/Non-Turbulent Decisions in an Intermittent Flow
,”
J. Fluid Mech.
,
64
(
04
), pp.
625
644
.
45.
Schobeiri
,
M. T.
,
Ozturk
,
B.
, and
Ashpis
,
E. D.
,
2007
, “
Effect of Reynolds Number and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Intermittency Behaviour Along the Suction Surface of a Low Pressure Turbine Blade
,”
ASME J. Turbomach.
,
129
(
1
), pp.
92
129
.
46.
Dhawan
,
S.
, and
Narasimha
,
R.
,
1958
, “
Some Properties of Boundary Layer Flow During the Transition From Laminar to Turbulent Motion
,”
J. Fluid Mech.
,
3
(
04
), pp.
418
436
.
47.
Abu-Ghannam
,
B. J.
, and
Shaw
,
R.
,
1980
, “
Natural Transition of Boundary Layers—The Effects of Turbulence, Pressure Gradient, and Flow History
,”
J. Mech. Eng. Sci.
,
22
(
5
), pp.
213
228
.
48.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar–Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
509
537
.
49.
Chen
,
K. K.
, and
Thyson
,
N. A.
,
1971
, “
Extension of Emmons' Spot Theory to Flows on Blunt Bodies
,”
AIAA J.
,
9
(
5
), pp.
821
825
.
50.
Emmon
,
H. W.
,
1951
, “
The Laminar-Turbulent Transition in a Boundary Layer—Part I
,”
J. Aeronaut. Sci.
,
18
(
7
), pp.
490
498
.
51.
Ellsworth
,
R. H.
, and
Mueller
,
T. J.
,
1991
, “
Airfoil Boundary Layer Measurements at Low Re in an Accelerating Flow From a Nonzero Velocity
,”
Exp. Fluids
,
11
, pp.
368
374
.
52.
Hatman
,
A.
, and
Wang
,
T.
,
1999
, “
A Prediction Model for Separated-Flow Transition
,”
ASME J. Turbomach.
,
121
(
3
), pp.
594
602
.
53.
Praisner
,
T. J.
, and
Clark
,
J. P.
,
2007
, “
Predicting Transition in Turbomachinery—Part I: A Review and New Model Development
,”
ASME J. Turbomach.
,
129
(
1
), pp.
1
13
.
54.
Davis
,
R. L.
,
Carter
,
J. E.
, and
Reshotko
,
E.
,
1987
, “
Analysis of Transitional Separation Bubbles on Infinite Swept Wings
,”
AIAA J.
,
25
(
3
), pp.
421
428
.
You do not currently have access to this content.